$I(J^P) = 0(\frac{1}{2}^+)$

Charge = $\frac{2}{3}e$ Top = +1

A REVIEW GOES HERE – Check our WWW List of Reviews

t-QUARK MASS

We first list the direct measurements of the top quark mass which employ the event kinematics and then list the measurements which extract a top quark mass from the measured $t\bar{t}$ cross-section using theory calculations. A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."

OUR EVALUATION of $173.07 \pm 0.52 \pm 0.72$ GeV is an average of published top mass measurements from Tevatron Runs. The LHC experiments are working on a combined average that should appear in the 2014 PDG edition once the correlated uncertainties between experiments are understood. The Tevatron average was provided by the Tevatron Electroweak Working Group (TEVEWWG). It takes correlated uncertainties into account and has a χ^2 of 8.4 for 11 degrees of freedom.

For earlier search limits see PDG 96, Physical Review D54 1 (1996). We no longer include a compilation of indirect top mass determinations from Standard Model Electroweak fits in the Listings (our last compilation can be found in the Listings of the 2007 partial update). For a discussion of current results see the reviews "The Top Quark" and "Electroweak Model and Constraints on New Physics."

t-Quark Mass (Direct Measurements)

The following measurements extract a t-quark mass from the kinematics of $t\bar{t}$ events. They are sensitive to the top quark mass used in the MC generator that is usually interpreted as the pole mass, but the theoretical uncertainty in this interpretation is hard to quantify. See the review "The Top Quark" and references therein for more information.

VALUE (GeV) DOCUMENT ID TECN COMMENT 173.07 ± 0.52 ± 0.72 OUR EVALUATION See comments in the header above. [173.5 \pm 0.6 \pm 0.8 GeV OUR 2012 EVALUATION] ¹ AAD $174.5 \ \pm \ 0.6 \ \pm \ 2.3$ 12ı ATLS $\ell+\cancel{E}_T+\geq$ 4 jets (\geq 1 *b*), MT ² AALTONEN $172.85 \pm 0.71 \pm 0.85$ 12AI CDF $\ell + \cancel{E}_T + \ge 4$ j (0,1,2b) template $172.7 \pm 9.3 \pm 3.7$ ³ AALTONEN 12AL CDF $^{''}_{6-8}$ jets with $\geq 1 b$ $172.5 \pm 1.4 \pm 1.5$ ⁴ AALTONEN 12G CDF ⁵ ABAZOV $173.9 \pm 1.9 \pm 1.6$ 12AB D0 $\ell\ell+\cancel{E}_T+\geq 2\mathsf{j}\;(\nu\mathsf{WT+MWT})$ ⁶ CHATRCHYAN 12BA CMS $172.5 \pm 0.4 \pm 1.5$ $\ell\ell+\cancel{E}_T+\geq 2j\ (\geq 1b)$, AMWT ⁷ CHATRCHYAN 12BP CMS $173.49 \pm \ 0.43 \pm \ 0.98$ $\ell + \cancel{E}_T + \geq 4j \ (\geq 2b)$ ⁸ AALTONEN 11AK CDF $172.3 ~\pm~ 2.4 ~\pm~ 1.0$ $\not\!\!E_T \,+ \geq 4 \, \mathsf{jets} \; (\, \geq 1 \, \mathit{b}\text{-tag})$ ⁹ AALTONEN $172.1 \pm 1.1 \pm 0.9$ 11E CDF ℓ + jets and dilepton ¹⁰ ABAZOV $174.94 \pm 0.83 \pm 1.24$ 11P D0 $\ell +
ot\!\!E_T + ext{4 jets (} \geq 1 ext{ } b ext{-tag)}$ $\ell + E_T + 4 \text{ jets } (\geq 1 \text{ } b ext{-tag}), \ \text{ME method}$ ¹¹ AALTONEN 10AE CDF $173.0\ \pm\ 1.2$ ¹² AALTONEN $170.7 ~\pm~ 6.3 ~\pm~ 2.6$ 10D CDF $\ell + \not\!\!E_T + 4 \text{ jets } (b\text{-tag})$ 13,14 ABAZOV 04G D0 $180.1 \pm 3.6 \pm 3.9$ lepton + jets ¹⁵ AFFOLDER $176.1 \pm 5.1 \pm 5.3$ 01 CDF lepton + jets 16,17 ABE $167.4 \pm 10.3 \pm 4.8$ 99B CDF dilepton ¹⁴ ABBOTT $168.4 \pm 12.3 \pm 3.6$ 98D D0 dilepton 16,18 ABE $186 \quad \pm 10 \quad \pm \ 5.7$ 97R CDF 6 or more jets • • • We do not use the following data for averages, fits, limits, etc. • • • ¹⁹ AALTONEN $173.18 \pm 0.56 \pm 0.75$ 12AP TEVA CDF, D0 combination 20 ABAZOV $173.7 \pm 2.8 \pm 1.5$ 12AB D0 $\ell\ell + \not\!\!E_T + \geq 2 j (\nu WT)$ ²¹ AALTONEN $172.4 ~\pm~ 1.4 ~\pm~ 1.3$ 11AC CDF ²² AALTONEN $176.9 \pm 8.0 \pm 2.7$ 11T CDF $p_T(\ell)$ shape ²³ ABAZOV $174.0 \pm 1.8 \pm 2.4$ 11R D0 ²⁴ CHATRCHYAN 11F $175.5 \pm 4.6 \pm 4.6$ CMS $\mathsf{dilepton} + \not\!\!E_T + \mathsf{jets}$ ²⁵ AALTONEN $169.3 \pm 2.7 \pm 3.2$ 10c CDF dilepton + b-tag (MT2+NWA) $174.8 \pm 2.4 + 1.2 \\ - 1.0$ ²⁶ AALTONEN 10E CDF \geq 6 jets, vtx *b*-tag ²⁷ AALTONEN $180.5 \pm 12.0 \pm 3.6$ 09AK CDF $\ell + \not\!\!E_T + \mathsf{jets} \; (\mathsf{soft} \; \mu \; \mathsf{b\text{-tag}})$ ²⁸ AALTONEN $172.7 \pm 1.8 \pm 1.2$ 09J CDF $\ell + \not\!\!E_T + 4 \text{ jets } (b\text{-tag})$ ²⁹ AALTONEN 09к CDF $171.1 \pm 3.7 \pm 2.1$ 6 jets, vtx b-tag ³⁰ AALTONEN 09L CDF $171.9 ~\pm~ 1.7 ~\pm~ 1.1$ $\ell + {\sf jets}, \, \ell\ell + {\sf jets}$ $171.2 \pm 2.7 \pm 2.9$ ³¹ AALTONEN 090 CDF

dilepton

NODE=Q007

NODE=Q007

NODE=Q007

NODE=Q007210

NODE=Q007210

NODE=Q007TP NODE=Q007TP

NODE=Q007TP NEW;→ UNCHECKED ←

OCCUR=2

OCCUR=2

$165.5 \begin{array}{c} + & 3.4 \\ - & 3.3 \end{array} \pm \ 3.1$	³² AALTONEN	09x CDF	$\ell\ell+ ot\!\!\!E_T$ ($ u\phi$ weighting)	
$174.7 \pm 4.4 \pm 2.0$	³³ ABAZOV	09AH D0	$dilepton + b-tag \ (\nuWT+MWT)$	
$170.7 \ ^{+}_{-} \ ^{4.2}_{3.9} \ \pm \ 3.5$	34,35 AALTONEN	08C CDF	dilepton, $\sigma_{t\overline{t}}$ constrained	
$171.5 \pm 1.8 \pm 1.1$ $177.1 \pm 4.9 \pm 4.7$	³⁶ ABAZOV ^{37,38} AALTONEN	08AH D0 07 CDF	$\ell + ot\!\!\!E_T + ext{4 jets}$ 6 jets with ≥ 1 b vtx	
$172.3 \begin{array}{c} +10.8 \\ -9.6 \end{array} \pm 10.8$	³⁹ AALTONEN	07в CDF	\geq 4 jets (\emph{b} -tag)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	⁴⁰ AALTONEN ^{41,42} AALTONEN	07D CDF 07I CDF	\geq 6 jets, vtx <i>b</i> -tag lepton + jets (<i>b</i> -tag)	
$173.7 \pm 4.4 + 2.1 \\ -2.0$	^{38,43} ABAZOV	07F D0	lepton + jets	
$176.2 \pm 9.2 \pm 3.9$ $179.5 \pm 7.4 \pm 5.6$ $164.5 \pm 3.9 \pm 3.9$	44 ABAZOV 44 ABAZOV 42,45 ABULENCIA	07w D0 07w D0 07D CDF	dilepton (MWT) dilepton ($ u$ WT) dilepton	OCCUR=2
$180.7 {}^{+15.5}_{-13.4} \pm 8.6$	⁴⁶ ABULENCIA	07J CDF	lepton + jets	
$170.3 \begin{array}{l} + & 4.1 & + & 1.2 \\ - & 4.5 & - & 1.8 \end{array}$		06U D0	lepton + jets (b-tag)	
$173.2 \ ^{+}_{-} \ ^{2.6}_{2.4} \ \pm \ 3.2$	^{48,49} ABULENCIA	06D CDF	lepton + jets	
$173.5 \ \ \begin{array}{c} + \ \ 3.7 \\ - \ \ 3.6 \end{array} \ \pm \ 1.3$	35,48 ABULENCIA	06D CDF	lepton + jets	OCCUR=2
$165.2 \pm 6.1 \pm 3.4$ $170.1 \pm 6.0 \pm 4.1$ $178.5 \pm 13.7 \pm 7.7$	42,50 ABULENCIA 35,51 ABULENCIA 52,53 ABAZOV	06G CDF 06V CDF 05 D0	dilepton dilepton 6 or more jets	
$176.5 \pm 15.7 \pm 7.7$ 176.1 ± 6.6	⁵⁴ AFFOLDER	03 D0 01 CDF	dilepton, lepton+jets, all-jets	OCCUR=2
$172.1 \pm 5.2 \pm 4.9$ 176.0 ± 6.5 $173.3 \pm 5.6 \pm 5.5$	⁵⁵ ABBOTT 17,56 _{ABE} 14,57 ABBOTT	99G D0 99B CDF 98F D0	di-lepton, lepton+jets dilepton, lepton+jets, all-jets lepton + jets	
$175.9 \pm 4.8 \pm 5.3$	16,58 ABE	98E CDF	lepton + jets	
$161 \pm 17 \pm 10$	16 ABE	98F CDF	dilepton	
$172.1 \pm 5.2 \pm 4.9$ 173.8 ± 5.0	⁵⁹ BHAT ⁶⁰ BHAT	98B RVUE 98B RVUE		OCCUR=2
173.8 ± 5.0 $173.3 \pm 5.6 \pm 6.2$	¹⁴ ABACHI	90B RVUE 97E D0	dilepton, lepton+jets, all-jets lepton + jets	OCCUR=2
$199 {}^{+19}_{-21} \pm 22$	ABACHI	95 D0	lepton + jets	
$176 \pm \ 8 \pm 10$	ABE	95F CDF	lepton $+$ b -jet	
$174 \pm 10 + 13 \\ -12$	ABE	94E CDF	lepton $+$ b -jet	

t-Quark MS Mass from Cross-Section Measurements

The top quark $\overline{\text{MS}}$ or pole mass can be extracted from a measurement of $\sigma(t\,\overline{t})$ by using theory calculations. We quote below the $\overline{\text{MS}}$ mass. See the review "The Top Quark" and references therein for more information.

VALUE (GeV) DOCUMENT ID TECN COMMENT $160.0^{+4.8}_{-4.3}$ ⁶¹ ABAZOV 11s D0 $\sigma(t\,\overline{t})$ + theory

• • • We do not use the following data for averages, fits, limits, etc. • • •

⁶² ABAZOV 09AG D0 cross sects, theory $+ \exp$ 63 ABAZOV 09R D0 cross sects, theory $+ \exp$

 $^1\mathrm{Based}$ on 1.04 fb $^{-1}$ of data at LHC7. Uses 2d-template analysis (MT) with m_t and jet energy scale factor (JSF) from m_W mass fit.

 2 Based on 8.7 fb $^{-1}$ of data in $p\overline{p}$ collisions at 1.96 TeV. The JES is calibrated by using the dijet mass from the W boson decay.

 3 Use the ME method based on 2.2 fb $^{-1}$ of data in $p\overline{p}$ collisions at 1.96 TeV.

 5 Combination with the result in 1 fb $^{-1}$ of preceding data reported in ABAZOV 09AH as

well as the MWT result of ABAZOV 11R with a statistical correlation of 60%. $^6\mathrm{Based}$ on 5.0 fb $^{-1}$ of data at LHC7. Uses an analytical matrix weighting technique (AMWT) and full kinematic analysis (KIN).

 $^{7}\mathrm{Based}$ on 5.0 fb $^{-1}$ of data at LHC7. The first error is statistical and JES combined, and the second is systematic. Ideogram method is used to obtain 2D liklihood for the kinematical fit with two parameters mtop and JES.

 8 Based on 5.7 fb $^{-1}$ in $p \overline{p}$ collisions at $\sqrt{s}=$ 1.96 TeV. Events with an identified charged statistically independent from those in the $\ell+$ jets and all hadronic channels while being sensitive to those events with a au lepton in the final state. Supersedes AALTONEN 07B.

 9 Based on 5.6 fb $^{-1}$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV. Employs a multi-dimensional template likelihood technique where the lepton plus jets (one or two b-tags) channel gives 172.2 \pm 1.2 \pm 0.9 GeV while the dilepton channel yields 170.3 \pm 2.0 \pm 3.1 GeV.

NODE=Q007TP2 NODE=Q007TP2

NODE=Q007TP2

NODE=Q007TP;LINKAGE=GD

NODE=Q007TP;LINKAGE=CL

NODE=Q007TP;LINKAGE=CD NODE=Q007TP;LINKAGE=OA

NODE=Q007TP;LINKAGE=VB

NODE=Q007TP;LINKAGE=CA

NODE=Q007TP;LINKAGE=RC

NODE=Q007TP;LINKAGE=TL

NODE=Q007TP;LINKAGE=NT

⁴ Based on 5.8 fb⁻¹ of data in $p\bar{p}$ collisions at 1.96 TeV. The quoted systematic error is the sum of JES(± 1.0) and systematic(± 1.1) uncertainties. The measurement is performed with a liklihood fit technique which simultaneously determines m_t and JES.

The results are combined. OUR EVALUATION includes the measurement in the dilepton channel only.

 10 Based on 3.6 fb $^{-1}$ in $p\overline{p}$ collisions at $\sqrt{s}=$ 1.96 TeV. ABAZOV 11P reports 174.94 \pm $0.83\pm0.78\pm0.96$ GeV, where the first uncertainty is from statistics, the second from JES, and the last from other systematic uncertainties. We combine the JES and systematic uncertainties. A matrix-element method is used where the JES uncertainty is constrained by the W mass. ABAZOV 11P describes a measurement based on 2.6 fb $^{-1}$ that is combined with ABAZOV 08AH, which employs an independent 1 fb $^{-1}$ of data.

 11 Based on 5.6 fb $^{-1}$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV. The likelihood calculated using a matrix element method gives $m_t=173.0\pm0.7 {
m (stat)}\pm0.6 {
m (JES)}\pm0.9 {
m (syst)}$ GeV, for a total uncertainty of 1.2 GeV.

 12 Based on 1.9 fb $^{-1}$ in $p\overline{p}$ collisions at $\sqrt{s}=$ 1.96 TeV. The result is from the measurement using the transverse decay length of b-hadrons and that using the transverse momentum of the W decay muons, which are both insensitive to the JES (jet energy scale) uncertainty. OUR EVALUATION uses only the measurement exploiting the decay length significance which yields $166.9^{+9.5}_{-8.5}(\text{stat})\pm2.9$ (syst) GeV. The measurement that uses the lepton transverse momentum is excluded from the average because of a statistical correlation with other samples.

 13 Obtained by re-analysis of the lepton + jets candidate events that led to ABBOTT 98F. It is based upon the maximum likelihood method which makes use of the leading order matrix elements.

 14 Based on 125 \pm 7 pb $^{-1}$ of data at $\sqrt{s}=$ 1.8 TeV.

 $^{15}\,\mathrm{Based}$ on $\sim 106\,\mathrm{pb}^{-1}$ of data at $\sqrt{\mathit{s}} = 1.8\,\mathrm{TeV}.$

¹⁶Based on $109 \pm 7 \text{ pb}^{-1}$ of data at $\sqrt{s} = 1.8 \text{ TeV}$.

 $^{17}\,\mathrm{See}$ AFFOLDER 01 for details of systematic error re-evaluation.

 18 Based on the first observation of all hadronic decays of $t\,\overline{t}$ pairs. Single b-quark tagging with jet-shape variable constraints was used to select signal enriched multi-jet events. The updated systematic error is listed. See AFFOLDER 01, appendix C.

 19 Combination based on up to 5.8 fb $^{-1}$ of data in $p\overline{p}$ collisions at 1.96 TeV.

 $^{20}\,\mathrm{Based}$ on 4.3 fb $^{-1}$ of data in p-pbar collisions at 1.96 TeV. The measurement reduces the JES uncertainty by using the single lepton channel study of ABAZOV 11P.

 21 Based on 3.2 fb $^{-1}$ in $p\overline{p}$ collisions at $\sqrt{s}=$ 1.96 TeV. The first error is from statistics and JES combined, and the latter is from the other systematic uncertainties. The result is obtained using an unbinned maximum likelihood method where the top quark mass and the JES are measured simultaneously, with $\Delta_{JES} =$ 0.3 \pm 0.3(stat).

 22 Uses a likelihood fit of the lepton p_T distribution based on 2.7 fb $^{-1}$ in $p\overline{p}$ collisions at $\sqrt{s} = 1.96 \text{ TeV}.$

 23 Based on a matrix-element method which employs 5.4 fb $^{-1}$ in $p\overline{p}$ collisions at $\sqrt{s}=$ 1.96 TeV. Superseded by ABAZOV 12AB.

 24 Based on 36 pb $^{-1}$ of pp collisions at $\sqrt{s}=$ 7 TeV. A Kinematic Method using b-tagging and an analytical Matrix Weighting Technique give consistent results and are combined. Superseded by CHATRCHYAN 12BA.

 25 Based on 3.4 fb $^{-1}$ of $p\,\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV. The result is obtained by combining the MT2 variable method and the NWA (Neutrino Weighting Algorithm). The MT2 method alone gives $m_t=168.0^{+4.8}_{-4.0} ({\rm stat})\pm 2.9 ({\rm syst})$ GeV with smaller systematic error due to small JES uncertainty.

 26 Based on 2.9 fb $^{-1}$ of $p \bar p$ collisions at $\sqrt s =$ 1.96 TeV. The first error is from statistics and JES uncertainty, and the latter is from the other systematics. Neural-network-based kinematical selection of 6 highest E_T jets with a vtx \emph{b} -tag is used to distinguish signal from background. Superseded by AALTONEN 12G.

 27 Based on 2 fb $^{-1}$ of data at $\sqrt{s}=$ 1.96 TeV. The top mass is obtained from the measurement of the invariant mass of the lepton (e or μ) from W decays and the soft μ in b-jet. The result is insensitive to jet energy scaling.

 28 Based on $1.9~{
m fb}^{-1}$ of data at $\sqrt{s}=1.96~{
m TeV}$. The first error is from statistics and jet energy scale uncertainty, and the latter is from the other systematics. Matrix element method with effective propagators.

 $^{29}\,\mathrm{Based}$ on 943 pb $^{-1}$ of data at $\sqrt{s}=1.96$ TeV. The first error is from statistical and jet-energy-scale uncertainties, and the latter is from other systematics. AALTONEN 09K selected 6 jet events with one or more vertex b-tags and used the tree-level matrix element to construct template models of signal and background.

 30 Based on $^{1.9}$ fb $^{-1}$ of data at $\sqrt{s}=$ 1.96 TeV. The first error is from statistical and jet-energy-scale (JES) uncertainties, and the second is from other systematics. Events with lepton + jets and those with dilepton + jets were simultaneously fit to constrain m_t and JES. Lepton + jets data only give $m_t = 171.8 \pm 2.2$ GeV, and dilepton data only give $m_t = 171.2^{+5.3}_{-5.1} \text{ GeV}$.

 31 Based on 2 fb $^{-1}$ of data at $\sqrt{s}=1.96$ TeV. Matrix Element method. Optimal selection with and without b-tag are obtained by neural network with neuroevolution technique to minimize the statistical error of m_t .

 32 Based on 2.9 fb $^{-1}$ of data at $\sqrt{s}=1.96$ TeV. Mass m_t is estimated from the likelihood for the eight-fold kinematical solutions in the plane of the azimuthal angles of the two neutrino momenta. $^{33}\,\mathrm{Based}$ on 1 fb $^{-1}$ of data at $\sqrt{s}=$ 1.96 TeV. Events with two identified leptons, and

those with one lepton plus one isolated track and a b-tag were used to constrain m_t . The

NODE=Q007TP;LINKAGE=ZA

NODE=Q007TP;LINKAGE=NA

NODE=Q007TP;LINKAGE=AE

NODE=Q007TP;LINKAGE=AO

NODE=Q007TP;LINKAGE=WW NODE=Q007TP;LINKAGE=F1 NODE=Q007TP;LINKAGE=XX NODE=Q007TP;LINKAGE=XZ NODE=Q007TP;LINKAGE=AR

NODE=Q007TP;LINKAGE=EA NODE=Q007TP;LINKAGE=VA

NODE=Q007TP;LINKAGE=NL

NODE=Q007TP;LINKAGE=NN

NODE=Q007TP;LINKAGE=OZ

NODE=Q007TP;LINKAGE=CH

NODE=Q007TP;LINKAGE=TA

NODE=Q007TP;LINKAGE=LN

NODE=Q007TP;LINKAGE=NO

NODE=Q007TP;LINKAGE=LO

NODE=Q007TP;LINKAGE=OT

NODE=Q007TP;LINKAGE=EN

NODE=Q007TP;LINKAGE=TE

NODE=Q007TP;LINKAGE=ON

NODE=Q007TP;LINKAGE=ZV

result is a combination of the νWT (ν Weighting Technique) result of $176.2\pm4.8\pm2.1$ GeV and the MWT (Matrix-element Weighting Technique) result of $173.2\pm4.9\pm2.0$ GeV.

 34 Reports measurement of $170.7^{+4.2}_{-3.9}\pm2.6\pm2.4$ GeV based on $1.2~{\rm fb}^{-1}$ of data at $\sqrt{s}=1.96$ TeV. The last error is due to the theoretical uncertainty on $\sigma_{t\,\overline{t}}$. Without the cross-section constraint a top mass of $169.7^{+5.2}_{-4.9}\pm3.1$ GeV is obtained.

³⁵ Template method.

 36 Result is based on 1 fb $^{-1}$ of data at $\sqrt{s}=1.96$ TeV. The first error is from statistics and jet energy scale uncertainty, and the latter is from the other systematics.

 $^{37}\,\mathrm{Based}$ on 310 pb^{-1} of data at $\sqrt{s}=$ 1.96 TeV.

 38 Ideogram method.

 $^{39}\,\mathrm{Based}$ on $311~\mathrm{pb}^{-1}$ of data at $\sqrt{s}=1.96$ TeV. Events with 4 or more jets with $E_T>15$ GeV, significant missing E_T , and secondary vertex b-tag are used in the fit. About 44% of the signal acceptance is from $\tau\nu+4$ jets. Events with identified e or μ are vetoed to provide a statistically independent measurement.

 $^{40}\,\mathrm{Based}$ on 1.02 fb $^{-1}$ of data at $\sqrt{s}=$ 1.96 TeV. Superseded by AALTONEN 12G.

 $^{41}\,\mathrm{Based}$ on 955 pb $^{-1}$ of data $\sqrt{s}=1.96$ TeV. m_t and JES (Jet Energy Scale) are fitted simultaneously, and the first error contains the JES contribution of 1.5 GeV.

42 Matrix element method.

 43 Based on 425 pb $^{-1}$ of data at $\sqrt{s}=1.96$ TeV. The first error is a combination of statistics and JES (Jet Energy Scale) uncertainty, which has been measured simultaneously to give JES $=0.989\pm0.029({\rm stat})$.

 44 Based on 370 pb $^{-1}$ of data at $\sqrt{s}=1.96$ TeV. Combined result of MWT (Matrix-element Weighting Technique) and ν WT (ν Weighting Technique) analyses is 178.1 \pm 6.7 \pm 4.8 GeV.

 $^{45}\,\mathrm{Based}$ on 1.0 fb $^{-1}$ of data at $\sqrt{s}=1.96$ TeV. ABULENCIA 07D improves the matrix element description by including the effects of initial-state radiation.

 46 Based on 695 pb $^{-1}$ of data at $\sqrt{s}=1.96$ TeV. The transverse decay length of the b hadron is used to determine m_t , and the result is free from the JES (jet energy scale) uncertainty.

47 Based on \sim 400 pb $^{-1}$ of data at $\sqrt{s}=1.96$ TeV. The first error includes statistical and systematic jet energy scale uncertainties, the second error is from the other systematics. The result is obtained with the b-tagging information. The result without b-tagging is $169.2^{+5.0}_{-7.4}^{+1.5}$ GeV. Superseded by ABAZOV 08AH.

 $^{48}\,\mathrm{Based}$ on 318 pb $^{-1}$ of data at $\sqrt{s}=$ 1.96 TeV.

⁴⁹ Dynamical likelihood method.

 $^{50}\,\mathrm{Based}$ on 340 pb^{-1} of data at $\sqrt{s}=1.96$ TeV.

 51 Based on 360 pb $^{-1}$ of data at $\sqrt{s}=1.96$ TeV.

 52 Based on 110.2 \pm 5.8 pb $^{-1}$ at $\sqrt{s}=$ 1.8 TeV.

 53 Based on the all hadronic decays of $t\bar{t}$ pairs. Single b-quark tagging via the decay chain $b\to c\to \mu$ was used to select signal enriched multijet events. The result was obtained by the maximum likelihood method after bias correction.

54 Obtained by combining the measurements in the lepton + jets [AFFOLDER 01], all-jets [ABE 97R, ABE 99B], and dilepton [ABE 99B] decay topologies.

 55 Obtained by combining the D0 result m_t (GeV) = 168.4 \pm 12.3 \pm 3.6 from 6 di-lepton events (see also ABBOTT 98D) and m_t (GeV) = 173.3 \pm 5.6 \pm 5.5 from lepton+jet events (ABBOTT 98F).

 56 Obtained by combining the CDF results of m_t (GeV)= $167.4\pm10.3\pm4.8$ from 8 dilepton events, m_t (GeV)= $175.9\pm4.8\pm5.3$ from lepton+jet events (ABE 98E), and m_t (GeV)= $186.0\pm10.0\pm5.7$ from all-jet events (ABE 97R). The systematic errors in the latter two measurements are changed in this paper.

⁵⁷ See ABAZOV 04G.

 58 The updated systematic error is listed. See AFFOLDER 01, appendix C.

 59 Obtained by combining the DØ $\,$ results of $m_t({\rm GeV}){=}168.4\pm12.3\pm3.6$ from 6 dilepton events and $m_t({\rm GeV}){=}173.3\pm5.6\pm5.5$ from 77 lepton+jet events.

 60 Obtained by combining the DØ results from dilepton and lepton+jet events, and the CDF results (ABE 99B) from dilepton, lepton+jet events, and all-jet events.

 61 Based on 5.3 fb $^{-1}$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV. ABAZOV 11S uses the measured $t\overline{t}$ production cross section of $8.13^{+1.02}_{-0.90}$ pb [ABAZOV 11E] in the lepton plus jets channel to obtain the top quark $\overline{\rm MS}$ mass by using an approximate NNLO computation (MOCH 08, LANGENFELD 09). The corresponding top quark pole mass is $167.5^{+5.4}_{-4.9}$ GeV. A different theory calculation (AHRENS 10, AHRENS 10A) is also used and yields $\rm m_{\tilde{t}}^{\overline{\rm MS}}=154.5^{+5.0}_{-4.3}$ GeV.

 62 Based on 1 fb 1 of data at $\sqrt{s}=1.96$ TeV. Uses the ℓ + jets, $\ell\ell$, and $\ell\tau$ + jets channels. ABAZOV 09AG extract the pole mass of the top quark using two different calculations that yield $169.1^{+5.9}_{-5.2}$ GeV (MOCH 08, LANGENFELD 09) and $168.2^{+5.9}_{-5.4}$ GeV (KIDONAKIS 08).

 63 Based on 1 fb 1 of data at $\sqrt{s}=1.96$ TeV. Uses the $\ell\ell$ and $\ell\tau$ + jets channels. ABAZOV 09R extract the pole mass of the top quark using two different calculations

NODE=Q007TP;LINKAGE=AN

NODE=Q007TP;LINKAGE=BC NODE=Q007TP;LINKAGE=BV

NODE=Q007TP;LINKAGE=TN NODE=Q007TP;LINKAGE=TO NODE=Q007TP;LINKAGE=LT

NODE=Q007TP;LINKAGE=NE NODE=Q007TP;LINKAGE=LA

NODE=Q007TP;LINKAGE=UB NODE=Q007TP;LINKAGE=OV

NODE=Q007TP;LINKAGE=ZO

NODE=Q007TP;LINKAGE=LE

NODE=Q007TP;LINKAGE=UL

NODE=Q007TP;LINKAGE=BZ

NODE=Q007TP;LINKAGE=BA NODE=Q007TP;LINKAGE=BB NODE=Q007TP;LINKAGE=UA NODE=Q007TP;LINKAGE=AL NODE=Q007TP;LINKAGE=AA NODE=Q007TP;LINKAGE=AZ

NODE=Q007TP;LINKAGE=F2

NODE=Q007TP;LINKAGE=DG

NODE=Q007TP;LINKAGE=BG

NODE=Q007TP;LINKAGE=AT NODE=Q007TP;LINKAGE=XY NODE=Q007TP;LINKAGE=BE

NODE=Q007TP;LINKAGE=BF

NODE=Q007TP2;LINKAGE=VA

NODE=Q007TP2;LINKAGE=AA

NODE=Q007TP2;LINKAGE=AB

that yield $173.3^{+9.8}_{-8.6}$ GeV (MOCH 08, LANGENFELD 09) and $171.5^{+9.9}_{-8.8}$ GeV (CAC-CIARI 08)

$m_t - m_{\overline{t}}$

Test of CPT conservation. OUR AVERAGE assumes that the systematic uncertainties are uncorrelated.

NODE=Q007CPT

NODE=Q007CPT

TECN COMMENT NODE=Q007CPT VALUE (GeV) DOCUMENT ID **-0.6** \pm **0.6 OUR AVERAGE** Error includes scale factor of 1.2. [-1.4 ± 2.0 GeV OUR NEW 2012 AVERAGE Scale factor = 1.6]

¹ CHATRCHYAN 12Y CMS $-0.44\pm0.46\pm0.27$ ² AALTONEN 11K CDF $-3.3 \pm 1.4 \pm 1.0$ $\ell + E_T + ext{4 jets}$

 $0.8 \pm 1.8 \pm 0.5$ ³ ABAZOV 11T D0

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

⁴ ABAZOV $3.8 \pm 3.4 \pm 1.2$ 09AA D0 $\ell + \not\!\!E_T + 4 \text{ jets } (\geq 1 \text{ } b\text{-tag})$

 1 Based on 4.96 fb $^{-1}$ of data at LHC7. Based on the fitted m_t for ℓ^+ and ℓ^- events using the Ideogram method.

²Based on a template likelihood technique which employs 5.6 fb⁻¹ in $p\overline{p}$ collisions at \sqrt{s} = 1.96 TeV.

Based on a matrix-element method which employs 3.6 fb $^{-1}$ in $p\overline{p}$ collisions at $\sqrt{s}=$ 1.96 TeV.

⁴Based on 1 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV.

NODE=Q007CPT;LINKAGE=CH

NODE=Q007CPT;LINKAGE=AA

NODE=Q007CPT;LINKAGE=AL

NODE=Q007CPT;LINKAGE=AB

t-quark DECAY WIDTH

DOCUMENT ID TECN COMMENT CL% **2.0** ±0.5 **OUR AVERAGE** $[2.0^{+0.7}_{-0.6}]$ GeV OUR 2012 AVERAGE]

 $\Gamma(t \rightarrow bW)/B(t \rightarrow bW)$ ¹ ABAZOV 12T D0

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet

 $1.99^{+0.69}_{-0.55}$ ² ABAZOV 11B D0 Repl. by ABAZOV 12T ² ABAZOV $\Gamma(t \rightarrow Wb)$ > 1.21 95 11B D0 ³ AALTONEN < 7.6 95 10AC CDF ℓ + jets, direct ⁴ AALTONEN <13.1 09м CDF $m_t(rec)$ distribution

 1 Based on 5.4 fb $^{-1}$ of data in ppbar collisions at 1.96 TeV. $\Gamma(t \rightarrow bW) = 1.87^{+0.44}_{-0.40}$ GeV is obtained from the observed t-channel sigle top quark production cross section, whereas B($t \rightarrow bW$) = 0.90 \pm 0.04 is used assuming $\sum_q B(t \rightarrow qW) = 1$. The result is valid for $m_t=172.5$ GeV, where as those for $m_t=170$ and 175 GeV are given.

² Based on 2.3 fb $^{-1}$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV. ABAZOV 11B extracted Γ_t from the partial width $\Gamma(t\to Wb)=1.92^{+0.58}_{-0.51}$ GeV measured using the tchannel single top production cross section, and the branching fraction br $t \to Wb = 0.962^{+0.068}_{-0.066}(\text{stat})^{+0.064}_{-0.052}(\text{syst})$. The $\Gamma(t \to Wb)$ measurement gives the 95% CL lowerbound of $\Gamma(t \to Wb)$ and hence that of Γ_t .

 3 Results are based on 4.3 fb $^{-1}$ of data in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV. The top quark mass and the hadronically decaying W boson mass are reconstructed for each candidate events and compared with templates of different top quark width. The two sided 68%CL interval is 0.3 GeV < $\Gamma_t <$ 4.4 GeV for $m_t =$ 172.5 GeV.

 4 Based on 955 pb $^{-1}$ of $p\overline{p}$ collision data at $\sqrt{s}=1.96$ TeV. AALTONEN 09M selected $t\,\overline{t}$ candidate events for the $\ell+E_T$ + jets channel with one or two b-tags, and examine the decay width dependence of the reconstructed m_{t} distribution. The result is for m_{t} =175 GeV, whereas the upper limit is lower for smaller m_t .

NODE=Q007W

NODE=Q007W

NEW

OCCUR=2

NODE=Q007W;LINKAGE=AZ

NODE=Q007W;LINKAGE=AB

NODE=Q007W;LINKAGE=AL

NODE=Q007W;LINKAGE=AA

t DECAY MODES

Mode Fraction (Γ_i/Γ) Confidence level Wq(q = b, s, d)

 Γ_1 Γ_2

 Γ_3

 $\ell \nu_{\ell}$ anything

 Γ_4 $\tau \nu_{\tau} b$

 $\gamma q(q=u,c)$

[c] < 5.9

[a,b] $(9.4\pm2.4)\%$

 $\times\,10^{-3}$

95%

NODE=Q007240; NODE=Q007

 $\mathsf{DESIG}{=}\mathsf{6}; \mathsf{OUR}\;\mathsf{EST}; \rightarrow \mathsf{UNCHECKED} \leftarrow$ DESIG=1;OUR EST;→ UNCHECKED ←

DESIG=5

DESIG=4;OUR EST;→ UNCHECKED ←

DESIG=3

	1 weak neutral current (T1) modes	NODE=Q007;CLUMP=A
$\Gamma_6 Zq(q=u,c)$	$T1 [d] < 2.1 \times 10^{-3} 95\%$	DESIG=2
[a] ℓ means e or μ dec	cay mode, not the sum over them.	LINKAGE=LPE
[b] Assumes lepton un	LINKAGE=LPF	
[c] This limit is for Γ	LINKAGE=TD3	
[d] This limit is for Γ	LINKAGE=TD2	
	t BRANCHING RATIOS	NODE=Q007245
$\Gamma(Wb)/\Gamma(Wq(q=b,s))$	NODE=Q007R6	
OUR AVERAGE assum	nes that the systematic uncertainties are uncorrelated.	NODE=Q007R6
<u>VALUE</u> 0.91±0.04 OUR AVERAGE	DOCUMENT ID TECN COMMENT	NODE=Q007R6
0.90 ± 0.04	¹ ABAZOV 11X D0	
$1.12^{igoplus 0.21}_{-0.19} {}^{+0.17}_{-0.13}$	² ACOSTA 05A CDF	
• • • We do not use the following	owing data for averages, fits, limits, etc. ● ●	
$0.97^{igoplus 0.09}_{igoplus 0.08}$	3 ABAZOV 08M D0 ℓ + n jets with 0,1,2 \emph{b} -tag	
$1.03^{igoplus 0.19}_{-0.17}$	⁴ ABAZOV 06K D0	
$0.94 + 0.26 + 0.17 \\ -0.21 - 0.12$	⁵ AFFOLDER 01C CDF	
is a combination of 0.95	ta. The error is statistical and systematic combined. The result \pm 0.07 from ℓ + jets channel and 0.86 \pm 0.05 from $\ell\ell$ channel. ws from the result by assuming unitarity of the 3x3 CKM matrix.	NODE=Q007R6;LINKAGE=AB
2 ACOSTA 05A result is fro of $t\bar{t}$ candidate events w statistical and the second	om the analysis of lepton $+$ jets and di-lepton $+$ jets final states ith $\sim 162~{ m pb}^{-1}$ of data at $\sqrt{s}=1.96~{ m TeV}$. The first error is I systematic. It gives R $>$ 0.61, or $ V_{tb} >0.78$ at 95% CL.	NODE=Q007R6;LINKAGE=AC
³ Result is based on 0.9 fb ⁻ 0.89 (95% CL).	$^{-1}$ of data. The 95% CL lower bound R $>$ 0.79 gives $\left V_{tb} ight >$	NODE=Q007R6;LINKAGE=BZ
4 ABAZOV 06K result is fit data at $\sqrt{s}=1.96$ TeV. ABAZOV 08M.	rom the analysis of $t \bar t \to \ell \nu + \geq 3$ jets with 230 pb $^{-1}$ of It gives R $>$ 0.61 and $ V_{tb} >$ 0.78 at 95% CL. Superseded by	NODE=Q007R6;LINKAGE=AZ
q is a d, s, or b quark, learner is statistical and the function gives R> 0.61 (0)	as the top-quark decay width ratio $R=\Gamma(Wb)/\Gamma(Wq)$, where by using the number of events with multiple b tags. The first be second systematic. A numerical integration of the likelihood 0.56) at 90% (95%) CL. By assuming three generation unitarity, $ a /b >0.78$ (0.75) at 90% (95%) CL is obtained. The result is at at $\sqrt{s}=1.8$ TeV.	NODE=Q007R6;LINKAGE=A
$\Gamma(\ell u_\ell$ anything) $/\Gamma_{ ext{total}}$	Г ₃ /Г	NODE=Q007R5
VALUE		NODE=Q007R5
0.094 ± 0.024 $$^{1}\ell$$ means e or μ decay m acceptance.	^{1}ABE 98X CDF ode, not the sum. Assumes lepton universality and $W\text{-decay}$	NODE=Q007R5;LINKAGE=A
$\Gamma(\tau \nu_{\tau} b)/\Gamma_{\text{total}}$	Γ4/Γ DOCUMENT ID TECN COMMENT	NODE=Q007R4 NODE=Q007R4
-	owing data for averages, fits, limits, etc. ● ●	, and the second
	1 ABULENCIA 06R CDF $\ell au+$ jets 2 ABE 97V CDF $\ell au+$ jets	
$\sqrt{s} = 1.96$ TeV. 2 events	for $t\overline{t} \rightarrow (\ell\nu_{\ell}) (\tau\nu_{\tau}) b\overline{b}$ events in 194 pb $^{-1}$ of $p\overline{p}$ collisions at are found where 1.00 ± 0.17 signal and 1.29 ± 0.25 background ng a 95% CL upper bound for the partial width ratio $\Gamma(t \rightarrow) < 5.2$.	NODE=Q007R4;LINKAGE=AL
² ABE 97V searched for $t\bar{t}$ $\sqrt{s} = 1.8$ TeV. They obse	$(\ell \nu_\ell) (\ell \nu_\ell) (\tau \nu_\tau) b \overline{b}$ events in 109 pb $^{-1}$ of $p \overline{p}$ collisions at erved 4 candidate events where one expects \sim 1 signal and \sim 2 e of the four observed events have jets identified as b candidates.	NODE=Q007R4;LINKAGE=A

-1						
$\Gamma(\gamma q(q=u,c))$))/F _{total}				Г ₅ /Г	NODE=Q007R3
VALUE	<u>CL%</u>			COMMENT		NODE=Q007R3
<0.0059	95	CHEKANOV				
		llowing data for aver				
<0.0064 <0.0465	95 95	² AARON ³ ABDALLAH	09A H1	$t ightarrow \gamma u$ PH B(γc or γu)		
< 0.0403	95 95	⁴ AKTAS	04C DE	$B(t \rightarrow \gamma u)$		
< 0.041	95	⁵ ACHARD	02J L3	$B(t \rightarrow \gamma c)$ or	γu)	
< 0.032	95	⁶ ABE	98G CD			
¹ CHEKANO	V 03 looked t	for single top produc	tion via FCI	NC in the reaction e	$^{\pm}$ $p \rightarrow e^{\pm}$	NODE=Q007R3;LINKAGE=CK
(t or \overline{t}) X tion and its B(γc)=B(, couplings a	in 130.1 pb^- decay into $Q = 0$, where found in the	$^{-1}$ of data at \sqrt{s} =3 ^{b}W was found. The e q is a u or c quarlieir Fig. 4. The conver- o, January 2004.	800–318 Ge\ e result is ol k. Bounds o	V. No evidence for the stained for $m_t = 175$ on the effective t - u - r	top produc- GeV when y and <i>t-u-Z</i>	
474 pb $^{-1}$.	The upper bo	single top production	tion gives th	ne bound on the FCI	NC coupling	NODE=Q007R3;LINKAGE=AA
		, which corresponds				
$\overline{t}c$ or $\overline{t}u$ in which lead: 175 GeV w private comand t - q - Z c most conse	541 pb^{-1} of s to the bound hen $B(t \rightarrow t)$ immunication, couplings are rvative bound	for single top prodeficial at \sqrt{s} =189–20 and on B($t \rightarrow \gamma q$) Zq)=0 is assumed. O. Yushchenko, Aprigiven in their Fig. 7 ds are found by choose tween the virtual γ and γ are found by choose γ and γ are found by choose γ and γ are found by choose γ are found by choose γ and γ are found by choose γ and γ are found by choose γ and γ are found by γ and γ are found by γ and γ are found by γ and γ are found γ and γ are found by γ and γ are found by γ and γ are found by γ and γ are found γ and γ are found by γ and γ are found γ and γ are found γ are found γ and γ are found γ and γ are found γ are found γ and γ are found γ are found γ and γ are found γ and γ are found γ are found γ and γ are found γ and γ are found γ are found γ and γ are found γ and γ are found γ and γ are found γ are found γ and γ are found γ are found γ and γ are found γ are found γ and γ are found γ are found γ and γ are found γ are found γ are found γ and γ are found γ are found γ are found γ and γ are found γ and γ are found γ are found γ and γ are found γ are found γ are found γ and γ are found γ and γ are found γ are found γ and γ are found γ are found γ	OB GeV. No of the conversible 2005. The and Table 4, osing the characters.	deviation from the S s a u or a c quark sion to the listed bo e bounds on the efform $_t=170-180$ niral couplings to m	iM is found, , for $m_t =$ und is from ective t - q - γ GeV, where	NODE=Q007R3;LINKAGE=AB
⁴ AKTAS 04 118.3 pb ⁻¹ to statistica is obtained	looked for si , and found al fluctuation, The convers	ingle top production 5 events in the e or the upper bound or sion to the partial warminication, E. Pere	via FCNC μ channels. In the $tu\gamma$ coloidth limit, w	in e^{\pm} collisions at By assuming that toupling $\kappa_{tu\gamma} < 0.2$ when $\mathrm{B}(\gammac) = \mathrm{B}(Z\iota)$	hey are due 7 (95% CL)	NODE=Q007R3;LINKAGE=AK
5 ACHARD (or $\overline{t}u$ in 63 which leads or c quark.	02 J looked for 4 pb^{-1} of data to a bound on The bound a	r single top producti ata at \sqrt{s} = 189–200 on the top-quark decissumes B(Zq)=0 ar B(Zq) \neq 0 are given	on via FCNO GeV. No day branching and is for m_{+} =	C in the reaction e^+ leviation from the Sg fraction B(γq), when 175 GeV; bounds the second sec	M is found, nere <i>q</i> is a <i>u</i>	NODE=Q007R3;LINKAGE=J
⁶ ABE 98G lo	ooked for $t \overline{t}$	events where one t is for $\Gamma(\gamma q)/\Gamma(W t)$	decays into		decays into	NODE=Q007R3;LINKAGE=A
Γ(Zq(q=u,d) Test for A	.,.	neutral current. Allo	wed by highe	er-order electroweak	Γ_6/Γ interaction.	NODE=Q007R2 NODE=Q007R2
VALUE <0.0021 (CL =		DOCUMENT ID 0.032 (CL = 95%) C	UR 2012 B	EST LIMIT]		NODE=Q007R2
<0.0021	95 ot use the fol	CHAIRCHYAN I. Ilowing data for aver		$t \rightarrow Zq (q = u, c)$	1)	
					77	
<0.0073 <0.032	95 95	^		$t \overline{t} \rightarrow \ell^+ \ell^- \ell'^{\pm} + t \rightarrow Zq (q = u, c)$		
< 0.032	95 95			$t \rightarrow Zq (q=u, c)$ $t \rightarrow Zq (q=c)$,	
< 0.037	95			$t \rightarrow Zq (q = u, c)$)	
< 0.159	95			$e^+e^- ightarrow \overline{t}c$ or $\overline{t}u$		
< 0.137	95			$e^+e^- ightarrow \bar{t}c$ or $\bar{t}\iota$		
< 0.14	95			$e^+e^- \rightarrow \bar{t}c \text{ or } \bar{t}\iota$		
< 0.137	95 05			$e^+e^- \rightarrow \bar{t}c \text{ or } \bar{t}\iota$ $e^+e^- \rightarrow \bar{t}c \text{ or } \bar{t}\iota$		
<0.17 <0.33				$e \cdot e \rightarrow tc \text{ or } tt$ $t\overline{t} \rightarrow (Wb) (Zc c)$		
		ata at LHC7. Search $^{\prime}=e,~\mu)$ final states				NODE=Q007R2;LINKAGE=CH
3 Based on 4 in $t\overline{t} \rightarrow \ell$ the bound.	$^{+}\ell^{-}\ell^{\prime\pm}\nu$ +	ata. ABAZOV 11M jets $(\ell, \ell' = e, \mu)$	final states,	and absence of the	signal gives	NODE=Q007R2;LINKAGE=AD NODE=Q007R2;LINKAGE=AZ
and $t\overline{t} \rightarrow$ bound. The production cross section	$ZcWb \rightarrow P$ e result is for cross section in assumption	$2 { m fb}^{-1}$. AALTONEN $\ell\ell cjjb$ decay chains $r 100\%$ longitudinall. The results for differ are given in their T	s, and absen y polarized erent Z pola able XII.	ce of the latter sign Z boson and the th rizations and those	al gives the eoretical $t\bar{t}$ without the	NODE=Q007R2;LINKAGE=AL
⁵ Result is b processes h	ased on 1.9 ave been look	fb $^{-1}$ of data at $$ ked for in $Z+\geq 4$ j $\rightarrow Zq)<0.037$ (0	$\overline{s}=1.96$ T et events with	th and without <i>b</i> -tag	g or $ZqZq$ g. No signal	NODE=Q007R2;LINKAGE=AA

 6 ABDALLAH 04C looked for single top production via FCNC in the reaction $e^+e^ightarrow$ $\overline{t}\,c$ or $\overline{t}\,u$ in 541 pb $^{-1}$ of data at \sqrt{s} =189–208 GeV. No deviation from the SM is found, which leads to the bound on B($t \to Zq$), where q is a u or a c quark, for $m_t = 175$ GeV when B($t \to \gamma q$)=0 is assumed. The conversion to the listed bound is from private communication, O. Yushchenko, April 2005. The bounds on the effective t-q- γ and t-q-Z couplings are given in their Fig. 7 and Table 4, for $m_t=170$ – $180~{
m GeV}$, where most conservative bounds are found by choosing the chiral couplings to maximize the negative interference between the virtual γ and Z exchange amplitudes.

 7 ACHARD 02J looked for single top production via FCNC in the reaction $e^+e^ightarrow \;ar t\,c$ or $\overline{t}u$ in 634 pb $^{-1}$ of data at \sqrt{s} = 189–209 GeV. No deviation from the SM is found, which leads to a bound on the top-quark decay branching fraction B(Zq), where q is a u or c quark. The bound assumes $B(\gamma q)$ =0 and is for m_t = 175 GeV; bounds for m_t =170 GeV and 180 GeV and B(γq) $\neq 0$ are given in Fig. 5 and Table 7. Table 6 gives constraints on *t-c-e-e* four-fermi contact interactions.

 8 HEISTER 02Q looked for single top production via FCNC in the reaction $e^+\,e^ightarrow\,ar{t}\,c$ or $\bar{t}u$ in 214 pb⁻¹ of data at \sqrt{s} = 204–209 GeV. No deviation from the SM is found, which leads to a bound on the branching fraction B(Zq), where q is a u or c quark. The bound assumes B(γq)=0 and is for m_t = 174 GeV. Bounds on the effective t- (c or u)- γ and t- (c or u)- Z couplings are given in their Fig. 2.

 9 ABBIENDI 01T looked for single top production via FCNC in the reaction $e^{+}\,e^{-}
ightarrow\,ar{t}\,c$ or $\overline{t}u$ in 600 pb $^{-1}$ of data at \sqrt{s} = 189–209 GeV. No deviation from the SM is found, which leads to bounds on the branching fractions B(Zq) and $B(\gamma q)$, where q is a u or c quark. The result is obtained for $m_t = 174$ GeV. The upper bound becomes 9.7%(20.6%) for $m_t = 169$ (179) GeV. Bounds on the effective t- (c or u)- γ and t- (c or u)-Z couplings are given in their Fig. 4.

 10 BARATE 00S looked for single top production via FCNC in the reaction $e^+e^ightarrow \, ar t\, c$ or $\overline{t}u$ in 411 pb $^{-1}$ of data at c.m. energies between 189 and 202 GeV. No deviation from the SM is found, which leads to a bound on the branching fraction. The bound assumes B(γq)=0. Bounds on the effective t- (c or u)- γ and t- (c or u)-Z couplings are given in their Fig. 4.

 11 ABE 98G looked for $t\, \overline{t}$ events where one t decays into three jets and the other decays into qZ with $Z \to \ell\ell$. The quoted bound is for $\Gamma(Zq)/\Gamma(Wb)$.

t-quark EW Couplings

W helicity fractions in top decays. F_0 is the fraction of longitudinal and F_{+} the fraction of right-handed W bosons. $\mathit{F}_{\mathit{V}+\mathit{A}}$ is the fraction of $\mathit{V}\!+\!\mathit{A}$ current in top decays. The effective Lagrangian (cited by ABAZOV 08AI) has terms \mathbf{f}_1^L and \mathbf{f}_1^R for V-A and V+A couplings, \mathbf{f}_2^L and \mathbf{f}_2^R for tensor couplings with \mathbf{b}_R and \mathbf{b}_L respectively.

 F_0 NODE=Q007TV0 VALUE DOCUMENT ID TECN COMMENT

VALUE	DOCUMENT ID		COMMENT
0.70 ± 0.05 OUR AVERAGE			
0.67 ± 0.07	¹ AAD	12BG ATLS	$F_0 = B(t \rightarrow W_0 b)$
$0.722 \pm 0.062 \pm 0.052$		12z TEVA	$F_0 = B(t \to W_0 b)$
$0.91\ \pm0.37\ \pm0.13$	³ AFFOLDER	00в CDF	$F_0 = B(t \rightarrow W_0 b)$
• • • We do not use the following	owing data for aver	rages, fits, lim	nits, etc. • • •
$0.669 \pm 0.078 \pm 0.065$	⁴ ABAZOV	11c D0	Repl. by AALTONEN 12Z
$0.70 \pm 0.07 \pm 0.04$	⁵ AALTONEN	10Q CDF	Repl. by AALTONEN 12Z
$0.62\ \pm0.10\ \pm0.05$	⁶ AALTONEN	09Q CDF	Repl. by AALTONEN 10Q
$0.425 \pm 0.166 \pm 0.102$	⁷ ABAZOV	08B D0	Repl. by ABAZOV 11C
$0.85 \ ^{+0.15}_{-0.22} \ \pm 0.06$	⁸ ABULENCIA	07ı CDF	$F_0 = B(t \rightarrow W_0 b)$
$0.74 \begin{array}{c} +0.22 \\ -0.34 \end{array}$	⁹ ABULENCIA	06u CDF	$F_0 = B(t \rightarrow W_0 b)$
$0.56\ \pm0.31$	¹⁰ ABAZOV	05G D0	$F_0 = B(t \rightarrow W_0 b)$

 1 Based on 1.04 fb $^{-1}$ of data at LHC7. AAD 12BG studied tt events with large E_T and either ℓ + \geq 4j or $\ell\ell$ + \geq 2j. The uncertainties are not independent, $\rho(F_0,F_-)$ =

 2 Based on 2.7 and 5.1 fb $^{-1}$ of CDF data in ℓ + jets and dilepton channels, and 5.4 fb $^{-1}$ of D0 data in ℓ + jets and dilepton channels. $F_0=0.682\pm0.035\pm0.046$ if $F_+=0.0017(1)$, while $F_+=-0.015\pm0.018\pm0.030$ if $F_0=0.688(4)$, where the assumed fixed values are the SM prediction for $m_t=173.3\pm1.1$ GeV and $m_W=80.399\pm0.023$ GeV.

 3 AFFOLDER 00B studied the angular distribution of leptonic decays of W bosons in t
ightharpoonup $\mathit{W}\,\mathit{b}$ events. The ratio F_0 is the fraction of the helicity zero (longitudinal) W bosons in the decaying top quark rest frame. B($t \rightarrow W_{+} b$) is the fraction of positive helicity (right-handed) positive charge W bosons in the top quark decays. It is obtained by assuming the Standard Model value of F_0 .

 4 Results are based on 5.4 fb $^{-1}$ of data in $p \overline{p}$ collisions at 1.96 TeV, including those of ABAZOV 08B. Under the SM constraint of $f_0 = 0.698$ (for $m_t = 173.3$ GeV, $m_{W} = 173.3$ 80.399 GeV), $f_{+} = 0.010 \pm 0.022 \pm 0.030$ is obtained.

NODE=Q007R2;LINKAGE=AB

NODE=Q007R2;LINKAGE=J

NODE=Q007R2;LINKAGE=H

NODE=Q007R2;LINKAGE=BT

NODE=Q007R2;LINKAGE=BS

NODE=Q007R2;LINKAGE=A

NODE=Q007260

NODE=Q007260

NODE=Q007TV0

NODE=Q007TV0;LINKAGE=GA

NODE=Q007TV0;LINKAGE=AL

NODE=Q007TV0:LINKAGE=A

NODE=Q007TV0;LINKAGE=BA

NODE=Q007TVP;LINKAGE=ZO

```
<sup>5</sup> Results are based on 2.7 fb<sup>-1</sup> of data in p\bar{p} collisions at \sqrt{s}=1.96 TeV. F_0 result is obtained by assuming F_+=0, while F_+ result is obtained for F_0=0.70, the SM value.
                                                                                                                           NODE=Q007TV0;LINKAGE=NN
    Model independent fits for the two fractions give F_0 = 0.88 \pm 0.11 \pm 0.06 and F_+ =
     -0.15 \pm 0.07 \pm 0.06 with correlation coefficient of -0.59. The results are for m_t =
  <sup>6</sup>Results are based on 1.9 fb<sup>-1</sup> of data in p\overline{p} collisions at \sqrt{s}=1.96 TeV. F_0 result is obtained assuming F_+=0, while F_+ result is obtained for F_0=0.70, the SM values. Model independent fits for the two fractions give F_0=0.66\pm0.05 and F_+=0.00
                                                                                                                           NODE=Q007TV0;LINKAGE=AA
  ^7\,\mathrm{Based} on 1 \mathrm{fb}^{-1} at \sqrt{s}=1.96 TeV.
                                                                                                                           NODE=Q007TV0;LINKAGE=ZO
  ^8\,\mathrm{Based} on 318 \mathrm{pb}^{-1} of data at \sqrt{s}=1.96 TeV.
                                                                                                                           NODE=Q007TV0;LINKAGE=BU
   ^9 Based on 200 pb^{-1} of data at \sqrt{s}= 1.96 TeV. t \to ~W\,b \to ~\ell 
u\,b (\ell= e or \mu). The
                                                                                                                           NODE=Q007TV0;LINKAGE=AE
    errors are stat + syst.
 ^{10} ABAZOV 05G studied the angular distribution of leptonic decays of W bosons in t \bar t
                                                                                                                           NODE=Q007TV0;LINKAGE=AZ
    candidate events with lepton + jets final states, and obtained the fraction of longitudinally
    polarized W under the constraint of no right-handed current, F_{+}=0. Based on 125
    \mathrm{pb}^{-1} of data at \sqrt{s}=1.8 TeV.
F_{-}
                                                                                                                          NODE=Q007TVN
NODE=Q007TVN
VALUE
                                             DOCUMENT ID
                                                                     TECN COMMENT
                                                                12BG ATLS F = B(t \rightarrow W \ b)
0.32 \pm 0.04
   ^1Based on 1.04 fb^{-1} of data at LHC7. AAD 12BG studied tt events with large 
ot\!\!E_T and
                                                                                                                           NODE=Q007TVN;LINKAGE=GA
    either \ell + \geq 4j or \ell\ell + \geq 2j. The uncertainties are not independent, \rho(F_0, F_-) =
F_{+}
                                                                                                                           NODE=Q007TVP
VALUE
                                              DOCUMENT ID TECN COMMENT
                                                                                                                           NODE=Q007TVP
                                 CL%
   -0.017\pm0.028 OUR AVERAGE
                                            ^{\mathrm{1}}\,\mathrm{AAD}
     0.01 \pm 0.05
                                                                 12BG ATLS F_+ = B(t \rightarrow W_+ b)
                                            <sup>2</sup> AALTONEN
   -0.033\pm0.034\pm0.031
                                                                 12Z TEVA F_{+} = B(t \rightarrow W_{+} b)
   -0.04 \pm 0.04 \pm 0.03
                                            <sup>3</sup> AALTONEN
                                                                 09Q CDF
                                                                                  F_+ = B(t \rightarrow W_+ b)
                                            <sup>4</sup> AFFOLDER
     0.11 \pm 0.15
                                                                 00B CDF
                                                                                  F_+ = B(t \rightarrow W_+ b)
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                            <sup>5</sup> ABAZOV
                                                                                  Repl. by AALTO-
     0.023 \pm 0.041 \pm 0.034
                                                                  11c D0
                                                                                      NEN 127
                                            <sup>6</sup> AALTONEN
   -0.01\ \pm0.02\ \pm0.05
                                                                 100 CDF
                                                                                  Repl. by AALTO-
                                                                                      NEN 12z
                                            <sup>7</sup> ABAZOV
                                                                                  Repl. by ABAZOV 110
     0.119 \pm 0.090 \pm 0.053
                                                                 08B D0
     0.056 \pm 0.080 \pm 0.057
                                            <sup>8</sup> ABAZOV
                                                                 07D
                                                                                  F_+ = B(t \rightarrow W_+ b)
                                                                       D0
     0.05 \  \, ^{+\, 0.11}_{-\, 0.05} \  \, \pm 0.03
                                            <sup>9</sup> ABULENCIA
                                                                 07ı
                                                                        CDF
                                                                                  F_+ = B(t \rightarrow W_+ b)
                                            <sup>9</sup> ABULENCIA
                                                                 07I CDF
                                                                                  F_{+} = B(t \rightarrow W_{+} b)
< 0.26
                                 95
                                                                                                                           OCCUR=2
                                           <sup>10</sup> ABULENCIA
                                                                                  F_+ = B(t \rightarrow W_+ b)
     0.27
                                 95
                                                                 06∪ CDF
                                           <sup>11</sup> ABAZOV
     0.00 \pm 0.13 \pm 0.07
                                                                 05L D0
                                                                                  F_+ = B(t \rightarrow W_+ b)
                                                                                  F_{+} = B(t \rightarrow W_{+} b)
                                           <sup>11</sup> ABAZOV
< 0.25
                                                                  05L D0
                                                                                                                           OCCUR=2
                                 95
                                           <sup>12</sup> ACOSTA
                                                                 05D CDF
                                                                                F_+ = B(t \rightarrow W_+ b)
< 0.24
   ^1Based on 1.04 fb^{-1} of data at LHC7. AAD 12BG studied tt events with large 
ot\!\!E_T and
                                                                                                                           NODE=Q007TVP;LINKAGE=GA
    either \ell + \geq 4j or \ell\ell + \geq 2j.
  <sup>2</sup> Based on 2.7 and 5.1 fb<sup>-1</sup> of CDF data in \ell + jets and dilepton channels, and 5.4 fb<sup>-1</sup> of D0 data in \ell + jets and dilepton channels. F_0 = 0.682 \pm 0.035 \pm 0.046 if F_+ = 0.000
                                                                                                                           NODE=Q007TVP;LINKAGE=AL
    0.0017(1), while F_+=-0.015\pm0.018\pm0.030 if F_0=0.688(4), where the assumed
    fixed values are the SM prediction for m_t=173.3\pm1.1~{
m GeV} and m_W=80.399\pm0.023
     GeV.
   ^3 Results are based on 1.9 fb^{-1} of data in p \overline{p} collisions at \sqrt{s}= 1.96 TeV. F_0 result is
                                                                                                                           NODE=Q007TVP;LINKAGE=AA
    obtained assuming F_+=0, while F_+ result is obtained for F_0=0.70, the SM values. Model independent fits for the two fractions give F_0=0.66\pm0.16\pm0.05 and F_+=0.00
     -0.03 \pm 0.06 \pm 0.03.
   ^4 AFFOLDER 00B studied the angular distribution of leptonic decays of W bosons in t 
ightarrow
                                                                                                                           NODE=Q007TVP;LINKAGE=A
    W\,b events. The ratio F_0 is the fraction of the helicity zero (longitudinal) W bosons in the decaying top quark rest frame. B(t\to W_+\,b) is the fraction of positive helicity
    (right-handed) positive charge W bosons in the top quark decays. It is obtained by
    assuming the Standard Model value of F_0.
  ^5 Results are based on 5.4 fb^{-1} of data in p\overline{p} collisions at 1.96 TeV, including those of ABAZOV 08B. Under the SM constraint of f_0=0.698 (for m_t=173.3 GeV, m_W=10.000
                                                                                                                           NODE=Q007TVP;LINKAGE=BA
    80.399 GeV), f_{+} = 0.010 \pm 0.022 \pm 0.030 is obtained.
   ^6 Results are based on 2.7 fb^{-1} of data in p\overline{p} collisions at \sqrt{s}= 1.96 TeV. F_0 result is
                                                                                                                           NODE=Q007TVP;LINKAGE=NN
    obtained by assuming F_+=0, while F_+ result is obtained for F_0=0.70, the SM value.
    Model independent fits for the two fractions give F_0 = 0.88 \pm 0.11 \pm 0.06 and F_+ =
     -0.15\pm0.07\pm0.06 with correlation coefficient of -0.59. The results are for m_t=0.05
```

175 GeV

 7 Based on 1 fb $^{-1}$ at $\sqrt{s}=1.96$ TeV.

 $^8\,\rm Based$ on 370 $\rm pb^{-1}$ of data at $\sqrt{s}=1.96$ TeV, using the $\ell+\rm jets$ and dilepton decay channels. The result assumes $F_0=$ 0.70, and it gives $F_+<0.23$ at 95% CL.

 $^9\,\mathrm{Based}$ on 318 pb^{-1} of data at $\sqrt{s}=1.96$ TeV.

 10 Based on 200 pb $^{-1}$ of data at $\sqrt{s}=1.96$ TeV. $t\to Wb\to \ell\nu b$ ($\ell=e$ or μ). The errors are stat + syst.

 11 ABAZOV 05L studied the angular distribution of leptonic decays of W bosons in $t\bar{t}$ events, where one of the W's from t or \bar{t} decays into e or μ and the other decays hadronically. The fraction of the "+" helicity W boson is obtained by assuming $F_0=0.7$, which is the generic prediction for any linear combination of V and A currents. Based on 230 \pm 15 pb $^{-1}$ of data at $\sqrt{s}=1.96$ TeV.

 12 ACOSTA 05D measures the $m_{\ell-b}^2$ distribution in $t\,\bar{t}$ production events where one or both W's decay leptonically to $\ell=e$ or $\mu,$ and finds a bound on the V+A coupling of the $t\,b\,W$ vertex. By assuming the SM value of the longitudinal W fraction $F_0={\rm B}(t\to W_0\,b)=0.70,$ the bound on F_+ is obtained. If the results are combined with those of AFFOLDER 00B, the bounds become $F_{V+A}<0.61$ (95% CL) and $F_+<0.18$ (95% CL), respectively. Based on 109 \pm 7 pb $^{-1}$ of data at $\sqrt{s}=1.8$ TeV (run I).

NODE=Q007TVP;LINKAGE=AC

NODE=Q007TVP;LINKAGE=BZ

NODE=Q007TVP;LINKAGE=BU

NODE=Q007TVP;LINKAGE=AE

NODE=Q007TVP;LINKAGE=AB

F_{V+A}

VALUE CL% DOCUMENT ID TECN COMMENT (0.29) 95 1 ABULENCIA 07G CDF (0.29)

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

$$-0.06\pm0.22\pm0.12$$
 1 ABULENCIA 07G CDF $F_{V+A}={\rm B}(t\to W\,b_R)$ <0.80 95 2 ACOSTA 05D CDF $F_{V+A}={\rm B}(t\to W\,b_R)$

 $^{1}\,\mathrm{Based}$ on 700 pb $^{-1}$ of data at $\sqrt{s}=$ 1.96 TeV.

 2 ACOSTA 05D measures the m_ℓ^2 $_{+b}$ distribution in $t\bar{t}$ production events where one or both W's decay leptonically to $\ell=e$ or μ , and finds a bound on the V+A coupling of the $t\,b\,W$ vertex. By assuming the SM value of the longitudinal W fraction $F_0={\rm B}(t\to W_0\,b)=0.70,$ the bound on F_+ is obtained. If the results are combined with those of AFFOLDER 00B, the bounds become $F_{V+A}<0.61$ (95% CL) and $F_+<0.18$ (95% CL), respectively. Based on $109\pm7~{\rm pb}^{-1}$ of data at $\sqrt{s}=1.8~{\rm TeV}$ (run I).

NODE=Q007TV2;LINKAGE=LE NODE=Q007TV2;LINKAGE=AC

f_1^R

• • • We do not use the following data for averages, fits, limits, etc. • •

 $-0.20 < {\rm Re}({\rm V}_{tb} \ {\rm f}_1^R) < 0.23$ 12BG ATLS Constr. on Wtb vtx $(V_{tb} f_1^R)^2 < 0.93$ ² ABAZOV 12E D0 Single-top $|f_1^R|^2 < 0.30$ ³ ABAZOV 121 D0 single-t + W helicity $|f_1^R|^2 < 1.01$ 09J D0 $|f_1^R|^2 < 2.5$ ⁵ ABAZOV 95 08AI D0

 1 Based on 1.04 fb $^{-1}$ of data at LHC7. AAD 12BG studied tt events with large $\not\!\!E_T$ and either $\ell+\geq$ 4j or $\ell\ell+\geq$ 2j. 2 Based on 5.4 fb $^{-1}$ of data. For each value of the form factor quoted the other two constants of the constant of the

² Based on 5.4 fb⁻¹ of data. For each value of the form factor quoted the other two are assumed to have their SM value. Their Fig. 4 shows two-dimensional posterior probability density distributions for the anomalous couplings.

³ Based on 5.4 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. Results are obtained by combining the limits from the W helicity measurements and those from the single top quark production.

⁴Based on 1 fb⁻¹ of data at $p\overline{p}$ collisions $\sqrt{s}=1.96$ TeV. Combined result of the W helicity measurement in $t\overline{t}$ events (ABAZOV 08B) and the search for anomalous tbW couplings in the single top production (ABAZOV 08AI). Constraints when \mathbf{f}_1^L and one of the anomalous couplings are simultaneously allowed to vary are given in their Fig. 1 and Table 1.

⁵ Result is based on 0.9 fb⁻¹ of data at $\sqrt{s}=1.96$ TeV. Single top quark production events are used to measure the Lorentz structure of the $t\,b\,W$ coupling. The upper bounds on the non-standard couplings are obtained when only one non-standard coupling is allowed to be present together with the SM one, $f_{t\,b}^L=V_{t\,b}^*$.

NODE=Q007TV4 NODE=Q007TV4

NODE=Q007TV2

NODE=Q007TV2

OCCUR=2

NODE=Q007TV4;LINKAGE=GA

NODE=Q007TV4;LINKAGE=AV

NODE=Q007TV4;LINKAGE=VM

NODE=Q007TV4;LINKAGE=ZV

NODE = Q007TV4; LINKAGE = AO

 f_2^L

'2					
VALUE	CL%	DOCUMENT ID		<u>TECN</u>	COMMENT
• • • We do not use the	following	data for averages	, fits,	limits, e	tc. • • •
$-$ 0.14 $<$ Re(f $_2^L$) $<$ 0.11	95	¹ AAD	12BG	ATLS	Constr. on Wtb vtx
$(V_{tb} f_2^L)^2 < 0.13$	95	² ABAZOV	12E	D0	Single-top
$ f_2^L ^2 < 0.05$	95	³ ABAZOV	121	D0	single-t + W helicity
$ f_2^L ^2 < 0.28$	95	⁴ ABAZOV	09J	D0	$ \mathbf{f}_{1}^{L} = 1$, $ \mathbf{f}_{1}^{R} = \mathbf{f}_{2}^{R} = 0$
$ f_2^{\bar{L}} ^2 < 0.5$	95	⁵ ABAZOV	1A80	D0	$ f_1^L ^2 = 1.4 + 0.6$

NODE=Q007TV5 NODE=Q007TV5 1 Based on 1.04 fb $^{-1}$ of data at LHC7. AAD 12BG studied tt events with large E_T and either $\ell+\geq$ 4j or $\ell\ell+\geq$ 2j.

 2 Based on 5.4 fb $^{-1}$ of data. For each value of the form factor quoted the other two are assumed to have their SM value. Their Fig. 4 shows two-dimensional posterior probability density distributions for the anomalous couplings.

³ Based on 5.4 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. Results are obtained by combining the limits from the W helicity measurements and those from the single top quark production.

⁴ Based on 1 fb⁻¹ of data at $p\overline{p}$ collisions $\sqrt{s}=1.96$ TeV. Combined result of the W helicity measurement in $t\overline{t}$ events (ABAZOV 08B) and the search for anomalous tbW couplings in the single top production (ABAZOV 08AI). Constraints when \mathbf{f}_1^L and one of the anomalous couplings are simultaneously allowed to vary are given in their Fig. 1 and Table 1.

 5 Result is based on 0.9 fb $^{-1}$ of data at $\sqrt{s}=1.96$ TeV. Single top quark production events are used to measure the Lorentz structure of the $t\,b\,W$ coupling. The upper bounds on the non-standard couplings are obtained when only one non-standard coupling is allowed to be present together with the SM one, $f_1^L=\mathsf{V}_{t\,b}^*$.

NODE=Q007TV5;LINKAGE=GA	4
110000 007 1 13,511117 10500	•

NODE=Q007TV5;LINKAGE=AV

NODE=Q007TV5;LINKAGE=VM

NODE=Q007TV5;LINKAGE=ZV

NODE=Q007TV5;LINKAGE=AO

f_2^R				
VALUE	CL%	DOCUMENT ID	<u>TECN</u>	COMMENT
• • • We do not use the	following	data for averages	s, fits, limits,	etc. • • •
$-0.08 < {\sf Re}({\sf f}_2^R) < 0.04$	95	¹ AAD	12BG ATLS	Constr. on Wtb vtx
$(V_{tb} f_2^R)^2 < 0.06$	95	² ABAZOV	12E D0	Single-top

0.00 (()) (0.0 .	50			Constit on the to
$(V_{tb} f_2^R)^2 < 0.06$ $ f_2^R ^2 < 0.12$	95	² ABAZOV	12E D0	Single-top
$ f_2^R ^2 < 0.12$	95	³ ABAZOV	12ı D0	single- $t + W$ helicity
$ f_2^R ^2 < 0.23$	95	⁴ ABAZOV	09J D0	$ \mathbf{f}_{1}^{L} = 1$, $ \mathbf{f}_{1}^{R} = \mathbf{f}_{2}^{L} = 0$
$ f_2^R ^2 < 0.3$	95	⁵ ABAZOV	08AI D0	$ f_1^L ^2 = 1.4^{+0.9}_{-0.8}$
1				

 1 Based on 1.04 fb $^{-1}$ of data at LHC7. AAD 12BG studied tt events with large E_T and either $\ell+\geq$ 4j or $\ell\ell+\geq$ 2j.

 2 Based on $^{5.4}$ fb $^{-1}$ of data. For each value of the form factor quoted the other two are assumed to have their SM value. Their Fig. 4 shows two-dimensional posterior probability density distributions for the anomalous couplings.

³ Based on 5.4 fb⁻¹ of data in $p\overline{p}$ collisions at 1.96 TeV. Results are obtained by combining the limits from the W helicity measurements and those from the single top quark production.

⁴ Based on 1 fb⁻¹ of data at $p\overline{p}$ collisions $\sqrt{s}=1.96$ TeV. Combined result of the W helicity measurement in $t\overline{t}$ events (ABAZOV 08B) and the search for anomalous tbW couplings in the single top production (ABAZOV 08AI). Constraints when \mathbf{f}_1^L and one of the anomalous couplings are simultaneously allowed to vary are given in their Fig. 1 and Table 1

 5 Result is based on $0.9~{\rm fb}^{-1}$ of data at $\sqrt{s}=1.96~{\rm TeV}.$ Single top quark production events are used to measure the Lorentz structure of the $t\,b\,W$ coupling. The upper bounds on the non-standard couplings are obtained when only one non-standard coupling is allowed to be present together with the SM one, ${\rm f}_L^L={\rm V}_{t\,b}^*$.

NODE=Q007TV6 NODE=Q007TV6

NODE=Q007TV6;LINKAGE=GA

 ${\sf NODE}{=}{\sf Q007TV6;} {\sf LINKAGE}{=}{\sf AV}$

NODE=Q007TV6;LINKAGE=VM

NODE=Q007TV6;LINKAGE=ZV

NODE=Q007TV6;LINKAGE=AO

Spin Correlation in $t\bar{t}$ Production

C is the correlation strength parameter, f is the ratio of events with correlated t and \overline{t} spins (SM prediction: f=1), and κ is the spin correlation coefficient. See "The Top Quark" review for more information.

• • • We do not use the following data for averages, fits, limits, etc. • • •	VALUE	DOCUMENT ID	TECN	COMMENT
	• • • We do not use th	e following data for a	verages, fits,	limits, etc. • • •
0.85 ± 0.29 12B D0 f ($\ell\ell$ + \geq 2 jets, ℓ + \geq 4 jets	$0.85 \!\pm\! 0.29$	$^{ m 1}$ ABAZOV	12B D0	f ($\ell\ell$ + \geq 2 jets, ℓ + \geq 4 jets)
1.15 $^{+0.42}_{-0.43}$ 2 ABAZOV 12B D0 f ($\ell+\cancel{E}_T+\ge$ 4 jets)	$1.15^{+0.42}_{-0.43}$	² ABAZOV	12B D0	f ($\ell+ ot\!\!E_T + \ge$ 4 jets)
$0.60^{+0.50}_{-0.16}$ 3 AALTONEN 11AR CDF κ ($\ell+\cancel{E}_T+\ge$ 4 jets)	$0.60^{+0.50}_{-0.16}$	³ AALTONEN	11AR CDF	$\kappa\;(\ell+ ot\!$
0.74 $^{+0.40}_{-0.41}$ 4 ABAZOV 11AE D0 f ($\ell\ell$ + $\not\!\!E_T$ + \geq 2 jets)	$0.74^{+0.40}_{-0.41}$	⁴ ABAZOV	11AE D0	f ($\ell\ell$ + $ ot\!\!\!E_T$ + \geq 2 jets)
0.10 ± 0.45 SABAZOV 11AF D0 C ($\ell\ell+\cancel{E}_T+\ge 2$ jets)	0.10 ± 0.45	⁵ ABAZOV	11AF D0	C ($\ell\ell$ + $ ot\!$

 $^{^1}$ This is a combination of the lepton + jets analysis presented in ABAZOV 12B and the dilepton measurement of ABAZOV 11AE. It provides a 3.1 σ evidence for the $t\bar{t}$ spin correlation.

NODE=Q007SC NODE=Q007SC

NODE=Q007SC

OCCUR=2

NODE=Q007SC;LINKAGE=A1

NODE=Q007SC;LINKAGE=A2

NODE=Q007SC;LINKAGE=AL

NODE=Q007SC;LINKAGE=AA

NODE=Q007SC;LINKAGE=AB

 $^{^2}$ Based on 5.3 fb $^{-1}$ of data. The error is statistical and systematic combined. A matrix element method is used.

³ Based on 4.3 fb⁻¹ of data. The measurement is based on the angular study of the top quark decay products in the helicity basis. The theory prediction is $\kappa \approx 0.40$.

 $^{^4}$ Based on 5.4 fb $^{-1}$ of data using a matrix element method. The error is statistical and systematic combined. The no-correlation hypothesis is excluded at the 97.7% CL.

 $^{^5}$ Based on 5.4 fb $^{-1}$ of data. The error is statistical and systematic combined. The NLO QCD prediction is C = 0.78 \pm 0.03. The neutrino weighting method is used for reconstruction of kinematics.

t-quark FCNC Couplings κ^{utg}/Λ and κ^{ctg}/Λ

VALUE (TeV ⁻¹)	CL%	DOCUMENT ID		TECN	COMMENT
ullet $ullet$ We do not use the	following o	data for averages	fits,	limits, e	tc. • • •
< 0.0069	95	l AAD	12 BP	ATLS	$t^{tug}/\Lambda (t^{tcg}=0)$
< 0.016	95		12 BP	ATLS	$t^{tcg}/\Lambda \ (t^{tug}=0)$
< 0.013		² ABAZOV	10 K	D0	κ^{tug}/Λ
< 0.057	95	² ABAZOV	10K	D0	κ^{tcg}/Λ
< 0.018		³ AALTONEN	09N	CDF	$\kappa^{tug}/\Lambda \ (\kappa^{tcg}=0)$
< 0.069	95	³ AALTONEN	09N	CDF	$\kappa^{tcg}/\Lambda \ (\kappa^{tug} = 0)$
< 0.037	95	⁴ ABAZOV	07V	D0	κ^{utg}/Λ
< 0.15	95	⁴ ABAZOV	07V	D0	κ^{ctg}/Λ

 1 Based on 2.05 fb $^{-1}$ of data at LHC7. The results are obtained from the 95% CL upper limit on the single top-quark production $\sigma(qg\to t)\cdot B(t\to bW)<3.9$ pb, for q=u or q=c, $B(t\to ug)<5.7\times 10^{-5}$ and $B(t\to ug)<2.7\times 10^{-4}$. 2 Based on 2.3 fb $^{-1}$ of data in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV. Upper limit of single top

² Based on 2.3 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV. Upper limit of single top quark production cross section 0.20 pb and 0.27 pb via FCNC t-u-g and t-c-g couplings, respectively, lead to the bounds without assuming the absence of the other coupling. B($t \to u + g$) < 2.0×10^{-4} and B($t \to c + g$) < 3.9×10^{-3} follow. ³ Based on 2.2 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV. Upper limit of single top

³ Based on 2.2 fb⁻¹ of data in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV. Upper limit of single top quark production cross section $\sigma(u(c)+g\to t)<1.8$ pb (95% CL) via FCNC t-u-g and t-c-g couplings lead to the bounds. B($t\to u+g$) $<3.9\times10^{-4}$ and B($t\to c+g$) $<5.7\times10^{-3}$ follow.

Result is based on 230 pb $^{-1}$ of data at $\sqrt{s}=1.96$ TeV. Absence of single top quark production events via FCNC t-u-g and t-c-g couplings lead to the upper bounds on the dimensioned couplings, κ^{utg}/Λ and κ^{ctg}/Λ , respectively.

NODE=Q007TUG NODE=Q007TUG

OCCUR=2

OCCUR=2

OCCUR=2

OCCUR=2

NODE=Q007TUG;LINKAGE=AD

NODE=Q007TUG;LINKAGE=AZ

NODE=Q007TUG;LINKAGE=AA

NODE=Q007TUG;LINKAGE=AB

Single t-Quark Production Cross Section in $p\bar{p}$ Collisions at $\sqrt{s}=1.8$ TeV

Direct probe of the $t\,b\,W$ coupling and possible new physics at $\sqrt{s}=1.8$ TeV. <u>VALUE (pb)</u> <u>CL%</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

• • • W	e do not use the follow	ing data for	averages	, fits, I	imits, etc. • • •
<24		^L ACOSTA	04H	CDF	$p\overline{p} \rightarrow tb + X, tqb + X$
<18		ACOSTA	-	CDF	1.1
<13	95	³ ACOSTA	02	CDF	$p\overline{p} \rightarrow tqb + X$

¹ ACOSTA 04H bounds single top-quark production from the s-channel W-exchange process, $q' \, \overline{q} \to t \, \overline{b}$, and the t-channel W-exchange process, $q' \, g \to q \, t \, \overline{b}$. Based on $\sim 106 \, \mathrm{pb}^{-1}$ of data.

² ACOSTA 02 bounds the cross section for single top-quark production via the s-channel W-exchange process, $q' \overline{q} \rightarrow t \overline{b}$. Based on $\sim 106 \, \mathrm{pb}^{-1}$ of data.

³ ACOSTA 02 bounds the cross section for single top-quark production via the *t*-channel *W*-exchange process, $q'g \rightarrow qt\bar{b}$. Based on $\sim 106 \, \mathrm{pb}^{-1}$ of data.

NODE=Q007STA NODE=Q007STA NODE=Q007STA

OCCUR=2

NODE=Q007STA;LINKAGE=AO

NODE=Q007STA;LINKAGE=DA

NODE=Q007STA;LINKAGE=EA

Single t-Quark Production Cross Section in $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV

Direct probes of the $t\,b\,W$ coupling and possible new physics at $\sqrt{s}=1.96$ TeV. OUR AVERAGE assumes that the systematic uncertainties are uncorrelated.

VALUE (pb)	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT
• • • We do not us	e the fol	lowing data for ave	rages, fits, lim	its, etc. • • •
$\begin{array}{c} 0.98 \!\pm\! 0.63 \\ 2.90 \!\pm\! 0.59 \end{array}$		1 ABAZOV 1 ABAZOV	11aa D0 11aa D0	s-channel t-channel
$3.43^{+0.73}_{-0.74}$		² ABAZOV	11AD D0	s- + t-channels
$1.8 \begin{array}{l} +0.7 \\ -0.5 \end{array}$		³ AALTONEN	10AB CDF	s-channel
0.8 ± 0.4		³ AALTONEN	10AB CDF	t-channel
$4.9 \begin{array}{l} +2.5 \\ -2.2 \end{array}$		⁴ AALTONEN	10∪ CDF	$ ot\!\!\!E_T$ $+$ jets decay
$3.14 ^{+ 0.94}_{- 0.80}$		⁵ ABAZOV	10 D0	t-channel
$1.05 \!\pm\! 0.81$		⁵ ABAZOV	10 D0	s-channel
< 7.3	95	⁶ ABAZOV	10J D0	au+ jets decay
$2.3 \begin{array}{l} +0.6 \\ -0.5 \end{array}$		⁷ AALTONEN	09AT CDF	s- $+$ t -channel
3.94 ± 0.88		⁸ ABAZOV	09z D0	s- $+$ t -channel
$2.2 \begin{array}{c} +0.7 \\ -0.6 \end{array}$		⁹ AALTONEN	08AH CDF	s- + t-channel
$4.7\ \pm1.3$		¹⁰ ABAZOV	08ı D0	s- $+$ t -channel
4.9 ± 1.4		¹¹ ABAZOV	07H D0	s- + t-channel
< 6.4	95	12 ABAZOV	05P D0	$p\overline{p} \rightarrow tb + X$
< 5.0	95	12 ABAZOV	05P D0	$p\overline{p} \rightarrow tqb + X$
<10.1	95	13 ACOSTA	05N CDF	$p\overline{p} \rightarrow tqb + X$
<13.6	95	¹³ ACOSTA	05N CDF	$p\overline{p} \rightarrow tb + X$

05N CDF

¹³ ACOSTA

<17.8

NODE=Q007STB NODE=Q007STB

NODE=Q007STB

OCCUR=2

OCCUR=2

OCCUR=2

OCCUR=2

OCCUR=2

OCCUR=2 OCCUR=3

 $p\overline{p} \rightarrow tb + X, tqb + X$

 $^{
m 1}$ Based on 5.4 fb $^{
m -1}$ of data. The error is statistical + systematic combined. The re-NODE=Q007STB;LINKAGE=BO sults are for $m_t = 172.5$ GeV. Results for other m_t values are given in Table 2 of ABAZOV 11AA. 2 Based on 5.4 fb $^{-1}$ of data and for $m_t=172.5$ GeV. The error is statistical + systematic NODE=Q007STB;LINKAGE=VO combined. Results for other m_t values are given in Table III of ABAZOV 11AD. The result is obtained by assuming the SM ratio between $t\,b\,(s\text{-channel})$ and $t\,q\,b\,(t\text{-channel})$ productions, and gives $|{
m V}_{tb}|_{t}^{L}|=1.02^{+0.10}_{-0.11},$ or $|{
m V}_{tb}|>0.79$ at 95% CL for a flat prior within 0 < $|V_{tb}|^2 < 1$. 3 Based on 3.2 fb $^{-1}$ of data. For combined s- t-channel result see AALTONEN 09AT. 4 Result is based on 2.1 fb $^{-1}$ of data. Events with large missing E_T and jets with at NODE=Q007STB;LINKAGE=AN NODE=Q007STB;LINKAGE=LN least one b-jet without identified electron or muon are selected. Result is obtained when observed 2.1 σ excess over the background originates from the signal for $m_t=175~{\rm GeV}$, giving $|V_{tb}| = 1.24^{+0.34}_{-0.29} \pm 0.07$ (theory). 5 Result is based on 2.3 fb $^{-1}$ of data. Events with isolated $\ell+E_T+2$,3, 4 jets with one or two b-tags are selected. The analysis assumes $m_t=$ 170 GeV. NODE=Q007STB;LINKAGE=AV 6 Result is based on 4.8 fb $^{-1}$ of data. Events with an isolated reconstructed tau lepton, NODE=Q007STB;LINKAGE=AO missing E_T + 2, 3 jets with one or two *b*-tags are selected. When combined with ABAZOV 092 result for $e + \mu$ channels, the s- and t-channels combined cross section is $3.84^{+0.89}_{-0.83}$ pb. 7 Based on 3.2 fb $^{-1}$ of data. Events with isolated $\ell+
ot\!\!E_T$ + jets with at least one NODE=Q007STB;LINKAGE=AL b-tag are analyzed and s- and t-channel single top events are selected by using the likelihood function, matrix element, neural-network, boosted decision tree, likelihood function optimized for s-channel process, and neural-networked based analysis of events with $ot\!\!E_T$ that has sensitivity for W o au
u decays. The result is for $m_t = 175$ GeV, and the mean value decreases by 0.02 pb/GeV for smaller m_t . The signal has 5.0 sigma significance. The result gives $|V_{\it tb}| = 0.91 \pm 0.11$ (stat+syst) ± 0.07 (theory), or $\left|V_{\it tb}\right|~>0.71$ at 95% CL. 8 Based on 2.3 fb $^{-1}$ of data. Events with isolated $\ell+
ot\!\!E_T+\ge 2$ jets with 1 or 2 b-tags NODE=Q007STB:LINKAGE=AB are analyzed and s- and t-channel single top events are selected by using boosted decision tree, Bayesian neural networks and the matrix element method. The signal has 5.0 sigma significance. The result gives $|V_{tb}|=1.07\pm0.12$, or $|V_{tb}|>0.78$ at 95% CL. The analysis assumes $m_t=170$ GeV. 9 Result is based on 2.2 fb $^{-1}$ of data. Events with isolated $\ell+
ot\!\!E_T+$ 2, 3 jets with NODE=Q007STB;LINKAGE=AA at least one b-tag are selected, and s- and t-channel single top events are selected by using likelihood, matrix element, and neural network discriminants. The result can be interpreted as $|V_{tb}|=0.88^{+0.13}_{-0.12} ({\rm stat+syst})\pm 0.07 ({\rm theory}), {\rm and}\ |V_{tb}|\ >0.66$ (95%) CL) under the $|V_{tb}| < 1$ constraint. $^{10}\,\mathrm{Result}$ is based on 0.9 fb^{-1} of data. Events with isolated $\ell+E_T+2$, 3, 4 jets with one or two b-vertex-tag are selected, and contributions from W+ jets, $t\,\bar{t},$ s- and t-NODE=Q007STB;LINKAGE=BZ channel single top events are identified by using boosted decision trees, Bayesian neural networks, and matrix element analysis. The result can be interpreted as the measurement of the CKM matrix element $|V_{tb}|=1.31^{+0.25}_{-0.21}$, or $|V_{tb}|>0.68$ (95% CL) under the $|V_{tb}| < 1$ constraint. 11 Result is based on 0.9 fb $^{-1}$ of data. This result constrains V_{tb} to 0.68 $<~|V_{tb}|~\leq~1$ NODE=Q007STB;LINKAGE=BA at 95% CL. 12 ABAZOV 05P bounds single top-quark production from either the s-channel W-exchange NODE=Q007STB;LINKAGE=AZ process, $q' \, \overline{q} \to t \, \overline{b}$, or the t-channel W-exchange process, $q' \, g \to q \, t \, \overline{b}$, based on \sim 230 pb $^{-1}$ of data. 13 ACOSTA 05N bounds single top-quark production from the t-channel W-exchange pro-NODE=Q007STB;LINKAGE=AS cess $(q'g \rightarrow qt\overline{b})$, the s-channel W-exchange process $(q'\overline{q} \rightarrow t\overline{b})$, and from the combined cross section of $\emph{t-}$ and $\emph{s-}$ channel. Based on $\sim~162~{\rm pb}^{-1}$ of data. Single t-Quark Production Cross Section in pp Collisions at $\sqrt{s} = 7$ TeV NODE=Q007ST7 Direct probe of the $t\,b\,W$ coupling and possible new physics at $\sqrt{s}=7$ TeV. NODE=Q007ST7 DOCUMENT ID NODE=Q007ST7 VALUE (pb) TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 83 \pm 4 $^{+20}_{-19}$ 12CH ATLS t-channel $\ell+\not\!\!E_T+$ (2,3)j (1b) 2 CHATRCHYAN 12BQ CMS ~ $t\text{-channel}~\ell+\not\!\!E_T+~\geq$ 2j (1b) 3 CHATRCHYAN 11R CMS ~ t-channel 67.2 ± 6.1 1 Based on 1.04 fb $^{-1}$ of data. The result gives $|{
m V}_{tb}|=1.13^{+0.14}_{-0.13}$ from the ratio NODE=Q007ST7;LINKAGE=AA $\sigma(\exp)/\sigma({
m th})$, where $\sigma({
m th})$ is the SM prediction for $|{
m V}_{tb}|=1$. The 95% CL lower bound of $|{
m V}_{tb}|~>0.75$ is found if $|{
m V}_{tb}|~<1$ is assumed. $\sigma(t)=59^{+18}_{-16}$ pb and $\sigma(\overline{t})=33^{+13}_{-12}$ pb are found for the separate single t and \overline{t} production cross sections, respectively. The results assume $m_t=172.5~{\rm GeV}$ for the acceptance. 2 Based on 1.17 fb $^{-1}$ of data for $\ell=\mu,$ 1.56 fb $^{-1}$ of data for $\ell=e$ at 7 TeV collected during 2011. The result gives $|\mathsf{V}_{tb}|=1.020\pm0.046(\mathsf{meas})\pm0.017(\mathsf{th}).$ The 95% CL NODE=Q007ST7;LINKAGE=CA lower bound of $|{
m V}_{tb}|~>0.92$ is found if $|{
m V}_{tb}|~<1$ is assumed. The results assume m_t

= 172.5 GeV for the acceptance.

 3 Based on $36~{\rm pb}^{-1}$ of data. The first error is statistical + systematic combined, the second is luminosity. The result gives $|\mathsf{V}_{tb}|=1.114\pm0.22(\exp)\pm0.02(\mathrm{th})$ from the ratio $\sigma(\exp)/\sigma(\mathrm{th})$, where $\sigma(\mathrm{th})$ is the SM prediction for $|\mathsf{V}_{tb}|=1$. The 95% CL lower bound of $|\mathsf{V}_{tb}|>0.62$ (0.68) is found from the 2D (BDT) analysis under the constraint $0<|\mathsf{V}_{tb}|^2<1$.

NODE=Q007ST7;LINKAGE=CH

$W\,t$ Production Cross Section in $p\,p$ Collisions at $\sqrt{s}=7$ TeV

VALUE (pb)	DOCUMENT ID TECN	COMMENT
• • • We do not use the follow	wing data for averages, fits, lin	mits, etc. • • •
16^{+5}_{-4}	¹ CHATRCHYAN 13C CMS	$t{+}W$ channel, $2\ell{+}E_T{+}1b$

 1 Based on 4.9 fb $^{-1}$ of data. The result gives V $_{tb}=1.01^{+0.16}_{-0.13}({\rm exp})^{+0.03}_{-0.04}({\rm th}).$ V $_{tb}>0.79$ (95% CL) if V $_{tb}<1$ is assumed. The results assume $m_t=172.5$ GeV for the acceptance.

NODE=Q007WT7 NODE=Q007WT7

NODE=Q007WT7;LINKAGE=CH

Single t-Quark Production Cross Section in ep Collisions

VALUE (pb)	CL%	DOCUMENT ID		TECN	COMMEN	
ullet $ullet$ We do not use the	following	data for averages	, fits,	limits, e	tc. • • •	
< 0.25	95	¹ AARON	09A		$e^{\pm} p \rightarrow$	
< 0.55		-	-		$e^{\pm} p \rightarrow$	
< 0.225	95	³ CHEKANOV	03	ZEUS	$e^{\pm} p \rightarrow$	$e^{\pm}tX$

 1 AARON 09A looked for single top production via FCNC in ${\rm e}^\pm p$ collisions at HERA with 474 pb $^{-1}$ of data at $\sqrt{s}=301$ –319 GeV. The result supersedes that of AKTAS 04.

 2 AKTAS 04 looked for single top production via FCNC in e^\pm collisions at HERA with $118.3~{\rm pb}^{-1},$ and found 5 events in the e or μ channels while 1.31 ± 0.22 events are expected from the Standard Model background. No excess was found for the hadronic channel. The observed cross section of $\sigma(ep\to etX)=0.29^{+0.15}_{-0.14}~{\rm pb}$ at $\sqrt{s}=319~{\rm GeV}$ gives the quoted upper bound if the observed events are due to statistical fluctuation.

gives the quoted upper bound if the observed events are due to statistical fluctuation. 3 CHEKANOV 03 looked in 130.1 pb $^{-1}$ of data at $\sqrt{s}=301$ and 318 GeV. The limit is for $\sqrt{s}=318$ GeV and assumes $m_t=175$ GeV.

NODE=Q007STE NODE=Q007STE

NODE=Q007STE;LINKAGE=AA

NODE=Q007STE;LINKAGE=AK

NODE=Q007STE;LINKAGE=CH

NODE=Q007TXA

NODE=Q007TXA

NODE=Q007TXA

$t\bar{t}$ Production Cross Section in $p\bar{p}$ Collisions at $\sqrt{s}=1.8$ TeV

Only the final combined $t\bar{t}$ production cross sections obtained from Tevatron Run I by the CDF and D0 experiments are quoted below.

VALUE (pb)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the following	data for averages	, fits,	limits, e	etc. • • •
$5.69\!\pm\!1.21\!\pm\!1.04$	¹ ABAZOV	03A	D0	Combined Run I data
$6.5 \begin{array}{c} +1.7 \\ -1.4 \end{array}$	² AFFOLDER	01A	CDF	Combined Run I data

 1 Combined result from 110 pb $^{-1}$ of Tevatron Run I data. Assume $m_{t}=$ 172.1 GeV.

$t\bar{t}$ Production Cross Section in $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV

Unless otherwise noted the first quoted error is from statistics, the second from systematic uncertainties, and the third from luminosity. If only two errors are quoted the luminosity is included in the systematic uncertainties.

VALUE (pb)	DOCUMENT ID	TECN COMMENT
ullet $ullet$ $ullet$ We do not use the	following data for a	verages, fits, limits, etc. • • •
$8.8 \pm 3.3 \pm 2.2$	¹ AALTONEN	12AL CDF $ au_h + ot \!$
$8.5 \pm 0.6 \pm 0.7$	² AALTONEN	11 D CDF $\ell+ ot\!\!E_T+{ m jets}\ (\ge 1 b{ m -tag})$
$7.64 \pm 0.57 \pm 0.45$	³ AALTONEN	11W CDF $\ell+ ot\!\!\!E_T+{ m jets}\ (\ge 1b{ m -tag})$
$7.99\!\pm\!0.55\!\pm\!0.76\!\pm\!0.46$	⁴ AALTONEN	11Y CDF $ ot\!\!E_T + \geq 4 \text{jets (0,1,2 } b\text{-tag)}$
$7.78^{igoplus 0.77}_{-0.64}$	⁵ ABAZOV	11E D0 $\ell + ot\!\!E_T + \geq 2$ jets
$7.56^{igoplus 0.63}_{-0.56}$	⁶ ABAZOV	11Z D0 Combination
$6.27\!\pm\!0.73\!\pm\!0.63\!\pm\!0.39$	⁷ AALTONEN	10AA CDF $\;\ell\ell+ ot\!\!\!E_T + \geq 2\;{\sf jets}$
$7.2 \pm 0.5 \pm 1.0 \pm 0.4$	⁸ AALTONEN	10E CDF \geq 6 jets, vtx <i>b</i> -tag
$7.8 \pm 2.4 \pm 1.6 \pm 0.5$	⁹ AALTONEN	10V CDF $\ell + \geq 3$ jets, soft- e b -tag
7.70 ± 0.52	¹⁰ AALTONEN	10W CDF $\ell + ot \!$
		norm. to $\sigma({\sf Z} ightarrow \ \ell\ell)_{TH}$
6.9 ± 2.0	¹¹ ABAZOV	10I D0 \geq 6 jets with 2 <i>b</i> -tags
$6.9 \pm 1.2 ^{+0.8}_{-0.7} \pm 0.4$	¹² ABAZOV	10Q D0 $ au_h$ + jets
$9.6 \pm 1.2 ^{+0.6}_{-0.5} \pm 0.6$	¹³ AALTONEN	09AD CDF $\;\ell\ell+ ot\!\!E_T\;/$ vtx b -tag
$9.1\ \pm1.1\ ^{+1.0}_{-0.9}\ \pm0.6$	¹⁴ AALTONEN	09н CDF $\ell + \geq$ 3 jets+ $ ot\!\!\!E_T$ /soft μ <i>b</i> -tag
$8.18^{igoplus 0.98}_{-0.87}$	¹⁵ ABAZOV	09AG D0 ℓ + jets, $\ell\ell$ and ℓau + jets

NODE=Q007TXA;LINKAGE=AB NODE=Q007TXA;LINKAGE=AF

NODE=Q007TX NODE=Q007TX

NODE=Q007TX

²Combined result from 105 pb⁻¹ of Tevatron Run I data. Assume $m_t = 175$ GeV.

```
7.5 \pm 1.0 \, ^{+0.7}_{-0.6} \, ^{+0.6}_{-0.5}
                                          <sup>16</sup> ABAZOV
                                                                       09R D0
                                                                                         \ell\ell and \ell\tau + jets
8.18^{+0.90}_{-0.84}\pm0.50
                                          <sup>17</sup> ABAZOV
                                                                       08M D0
                                                                                         \ell + n jets with 0,1,2 b-tag
                                          <sup>18</sup> ABAZOV
7.62 \pm 0.85
                                                                                         \ell + n \text{ jets} + b \text{-tag} or kinematics
8.5 \begin{array}{c} +2.7 \\ -2.2 \end{array}
                                          <sup>19</sup> ABULENCIA
                                                                               CDF \ell^+\ell^- (\ell=e,\mu)
8.3 \pm 1.0 \stackrel{+2.0}{-1.5} \pm 0.5
                                          <sup>20</sup> AALTONEN
                                                                       07D CDF
                                                                                          \geq 6 jets, vtx b-tag
7.4 \pm 1.4 \pm 1.0
                                          <sup>21</sup> ABAZOV
                                                                       070 D0
                                                                                         \ell\ell + jets, vtx b-tag
4.5 \begin{array}{cccc} +2.0 & +1.4 \\ -1.9 & -1.1 \end{array} \pm 0.3
                                          <sup>22</sup> ABAZOV
                                                                       07P
                                                                              D0
                                                                                          \geq 6 jets, vtx b-tag
6.4 \begin{array}{c} +1.3 \\ -1.2 \end{array} \pm 0.7 \ \pm 0.4
                                          <sup>23</sup> ABAZOV
                                                                       07R D0
                                                                                         \ell + \geq 4 jets
                                          <sup>24</sup> ABAZOV
6.6 \pm 0.9 \pm 0.4
                                                                       06X D0
                                                                                         \ell + jets, vtx b-tag
8.7 \pm 0.9 \begin{array}{c} +1.1 \\ -0.9 \end{array}
                                          <sup>25</sup> ABULENCIA
                                                                       06Z
                                                                              CDF \ell + jets, vtx b-tag
5.8 \pm 1.2 \begin{array}{c} +0.9 \\ -0.7 \end{array}
                                          ^{26} ABULENCIA,A 06C CDF missing \textit{E}_{T} + jets, vtx \textit{b}-tag
7.5 \pm 2.1 \begin{array}{c} +3.3 & +0.5 \\ -2.2 & -0.4 \end{array}
                                          <sup>27</sup> ABULENCIA,A 06E CDF 6–8 jets, b-tag
8.9 \pm 1.0 ^{+1.1}_{-1.0}
                                          ^{28} ABULENCIA,A 06F CDF \ell + \geq 3 jets, \emph{b}-tag
8.6 \begin{array}{c} +1.6 \\ -1.5 \end{array} \pm 0.6
                                          <sup>29</sup> ABAZOV
                                                                       05Q D0
                                                                                         \ell + \mathsf{n} jets
8.6^{+3.2}_{-2.7}\pm1.1\pm0.6
                                          <sup>30</sup> ABAZOV
                                                                       05R D0
                                                                                         di-lepton + n jets
6.7 \  \, ^{+\, 1.4}_{-\, 1.3} \  \, ^{+\, 1.6}_{-\, 1.1} \  \, \pm 0.4
                                          31 ABAZOV
                                                                       05x D0
                                                                                         \ell + jets / kinematics
5.3\ \pm 3.3\ ^{+1.3}_{-1.0}
                                          <sup>32</sup> ACOSTA
                                                                       05S CDF \ell + jets / soft \mu b-tag
6.6 \pm 1.1 \pm 1.5
                                          <sup>33</sup> ACOSTA
                                                                       05T CDF \ell + jets / kinematics
6.0 \  \, ^{+1.5}_{-1.6} \  \, ^{+1.2}_{-1.3}
                                          <sup>34</sup> ACOSTA
                                                                       050 CDF \ell + jets/kinematics + vtx b-tag
5.6 \begin{array}{c} +1.2 \\ -1.1 \end{array} \begin{array}{c} +0.9 \\ -0.6 \end{array}
                                          <sup>35</sup> ACOSTA
                                                                       05V CDF \ell + n jets
<sup>36</sup> ACOSTA
                                                                       04I CDF di-lepton + jets + missing ET
```

 1 Based on 2.2 fb $^{-1}$ of data in $p\,\overline{p}$ collisions at 1.96 TeV. The result assumes the acceptance for $m_t=172.5$ GeV.

 2 Based on 1.12 fb $^{-1}$ and assumes $m_t=175$ GeV, where the cross section changes by ± 0.1 pb for every ∓ 1 GeV shift in m_t . AALTONEN 11D fits simultaneously the $t\bar{t}$ production cross section and the b-tagging efficiency and find improvements in both measurements.

 3 Based on 2.7 fb $^{-1}$. The first error is from statistics and systematics, the second is from luminosity. The result is for $m_t=175$ GeV. AALTONEN 11W fits simultaneously a jet flavor discriminator between b-, c-, and light-quarks, and find significant reduction in the systematic error.

 4 Based on 2.2 fb $^{-1}$. The result is for $m_t=172.5$ GeV. AALTONEN 11Y selects multi-jet events with large $\not\!\!E_T$, and vetoes identified electrons and muons.

 5 Based on 5.3 fb $^{-1}$. The error is statistical + systematic + luminosity combined. The result is for $m_t=172.5$ GeV. The results for other m_t values are given in Table XII and eq.(10) of ABAZOV 11E.

 6 Combination of a dilepton measurement presented in ABAZOV 11Z (based on 5.4 fb $^{-1}$), which yields $7.36^{+0.90}_{-0.79}$ (stat+syst) pb, and the lepton + jets measurement of ABAZOV 11E. The result is for $m_t=172.5$ GeV. The results for other m_t values is given by eq.(5) of ABAZOV 11A.

 7 Based on 2.8 fb $^{-1}$. The result is for $m_t=175$ GeV.

 8 Based on 2.9 fb $^{-1}$. Result is obtained from the fraction of signal events in the top quark mass measurement in the all hadronic decay channel.

 $^9\,\mathrm{Based}$ on 1.7 fb $^{-1}$. The result is for $m_t=175~\mathrm{GeV}.$ AALTONEN 10V uses soft electrons from b-hadron decays to suppress $W+\mathrm{jets}$ background events.

¹⁰ Based on 4.6 fb⁻¹. The result is for $m_t = 172.5$ GeV. The ratio $\sigma(t\bar{t} \to \ell + \text{jets}) / \sigma(Z/\gamma^* \to \ell\ell)$ is measured and then multiplied by the theoretical $Z/\gamma^* \to \ell\ell$ cross section of $\sigma(Z/\gamma^* \to \ell\ell) = 251.3 \pm 5.0$ pb, which is free from the luminosity error

section of $\sigma(Z/\gamma^* \to \ell\ell) = 251.3 \pm 5.0$ pb, which is free from the luminosity error. ¹¹ Based on 1 fb $^{-1}$. The result is for $m_t = 175$ GeV. 7.9 ± 2.3 pb is found for $m_t = 170$ GeV. ABAZOV 101 uses a likelihood discriminant to separate signal from background, where the background model was created from lower jet-multiplicity data.

 12 Based on 1 fb $^{-1}$. The result is for $m_t=170$ GeV. For $m_t=175$ GeV, the result is $6.3^{+1.2}_{-1.1}(\mathrm{stat})\pm0.7(\mathrm{syst})\pm0.4(\mathrm{lumi})$ pb. Cross section of $t\bar{t}$ production has been measured in the $t\bar{t}\to\tau_h+$ jets topology, where τ_h denotes hadronically decaying τ leptons. The result for the cross section times the branching ratio is $\sigma(t\bar{t})\cdot\mathrm{B}(t\bar{t}\to\tau_h+\mathrm{jets})=0.60^{+0.23}_{-0.22}^{+0.15}_{-0.14}^{+0.04}$ pb for $m_t=170$ GeV.

 13 Based on 1.1 fb $^{-1}$. The result is for B(W $\rightarrow ~\ell \nu)=$ 10.8% and $m_t=$ 175 GeV; the mean value is 9.8 for $m_t=$ 172.5 GeV and 10.1 for $m_t=$ 170 GeV. AALTONEN 09AD

NODE=Q007TX;LINKAGE=TE

NODE=Q007TX;LINKAGE=LT

NODE=Q007TX;LINKAGE=TO

 ${\sf NODE}{=}{\sf Q007TX;} {\sf LINKAGE}{=}{\sf TN}$

NODE=Q007TX;LINKAGE=OB

NODE=Q007TX;LINKAGE=ZB

NODE=Q007TX;LINKAGE=ON NODE=Q007TX;LINKAGE=LN

NODE=Q007TX;LINKAGE=LE

NODE=Q007TX;LINKAGE=EN

NODE=Q007TX;LINKAGE=OA

NODE=Q007TX;LINKAGE=VZ

NODE=Q007TX;LINKAGE=LO

used high p_T e or μ with an isolated track to select $t\,\overline{t}$ decays into dileptons including ℓ $= \tau$. The result is based on the candidate event samples with and without vertex b-tag.

 $^{14}\,\mathrm{Based}$ on 2 fb $^{-1}.$ The result is for $m_t=$ 175 GeV; the mean value is 3% higher for m_t = 170 GeV and 4% lower for $m_t = 180$ GeV.

 15 Result is based on 1 fb $^{-1}$ of data. The result is for $\emph{m}_{t}=$ 170 GeV, and the mean value decreases with increasing m_t ; see their Fig. 2. The result is obtained after combining ℓ + jets, $\ell\ell$, and $\ell\tau$ final states, and the ratios of the extracted cross sections are R $^{\ell\ell/\ell j}=0.86^{+0.19}_{-0.17}$ and R $^{\ell\tau/\ell\ell-\ell j}=0.97^{+0.32}_{-0.29}$, consistent with the SM expectation of R = 1. This leads to the upper bound of B($t
ightarrow bH^+$) as a function of m_{H^+} . Results are shown in their Fig. 1 for B($H^+ \to \tau \nu$) = 1 and B($H^+ \to c \bar{s}$) = 1 cases. Comparison of the m_t dependence of the extracted cross section and a partial NNLO prediction gives $m_t = 169.1^{+5.9}_{-5.2} \text{ GeV}.$

 $^{16}\,\mathrm{Result}$ is based on 1 fb^{-1} of data. The result is for $m_t=170$ GeV, and the mean value changes by $-0.07~[m_t({\rm GeV})-170]$ pb near the reference m_t value. Comparison of the $\emph{m}_{\emph{t}}$ dependence of the extracted cross section and a partial NNLO QCD prediction gives $m_t=171.5^{+9.9}_{-8.8}$ GeV. The ℓau channel alone gives $7.6^{+4.9}_{-4.3}+3.5^{+1.4}_{-3.4}$ pb and the $\ell\ell$ channel gives 7.5 + 1.2 + 0.7 + 0.7 pb.

 $^{17}\mathrm{Result}$ is based on 0.9 fb $^{-1}$ of data. The first error is from stat + syst, while the latter error is from luminosity. The result is for m_t =175 GeV, and the mean value changes by $-0.09 \text{ pb} \cdot [m_t(\text{GeV}) - 175].$

 18 Result is based on 0.9 fb $^{-1}$ of data. The cross section is obtained from the $\ell+\geq 3$ jet event rates with 1 or 2 b-tag, and also from the kinematical likelihood analysis of the $\ell+$ 3, 4 jet events. The result is for $m_t=$ 172.6 GeV, and its m_t dependence shown in Fig. 3 leads to the constraint $m_t=170\pm7~{\rm GeV}$ when compared to the SM prediction.

 $^{19}\mathrm{Result}$ is based on 360 pb $^{-1}$ of data. Events with high p_T oppositely charged dileptons $\ell^+\ell^-$ ($\ell=e,\,\mu$) are used to obtain cross sections for $t\, \bar t,\,W^+W^-$, and $Z\to\, au^+ au^$ production processes simultaneously. The other cross sections are given in Table IV.

 20 Based on 1.02 fb $^{-1}$ of data. Result is for $m_t=$ 175 GeV. Secondary vertex b-tag and neural network selections are used to achieve a signal-to-background ratio of about 1/2.

 21 Based on 425 pb $^{-1}$ of data. Result is for $m_t=175$ GeV. For $m_t=170.9$ GeV, $7.8 \pm 1.8 ({\sf stat + syst}) \ {\sf pb} \ {\sf is obtained}.$

 22 Based on 405 \pm 25 pb $^{-1}$ of data. Result is for $m_t=175$ GeV. The last error is for luminosity. Secondary vertex b-tag and neural network are used to separate the signal events from the background.

 $^{23}\,\mathrm{Based}$ on 425 pb^{-1} of data. Assumes $m_t=175$ GeV.

 24 Based on $\sim~$ 425 pb $^{-1}$. Assuming $m_t=$ 175 GeV. The first error is combined statistical and systematic, the second one is luminosity.

 25 Based on \sim 318 pb $^{-1}$. Assuming $m_t=$ 178 GeV. The cross section changes by ± 0.08 pb for each ∓ 1 GeV change in the assumed m_t . Result is for at least one b-tag. For at least two b-tagged jets, $t\bar{t}$ signal of significance greater than 5σ is found, and the cross section is $10.1^{+1.6}_{-1.4}^{+2.0}$ pb for $m_t = 178$ GeV. For $m_t = 175$ GeV, the result is $10.1^{+1.6}_{-1.4}^{+2.0}$ and $10.1^{+1.6}_{-1.4}^{+2.0}$ Assuming $m_t = 178$ GeV. For $m_t = 175$ GeV, the result is

 $6.0\pm1.2^{+0.9}_{-0.7}$. This is the first CDF measurement without lepton identification, and hence it has sensitivity to the $W \to \tau \nu$ mode.

 27 ABULENCIA,A 06E measures the $t\bar{t}$ production cross section in the all hadronic decay mode by selecting events with 6 to 8 jets and at least one b-jet. S/B=1/5 has been achieved. Based on 311 pb $^{-1}$. Assuming $m_t = 178$ GeV.

²⁸ Based on \sim 318 pb $^{-1}$. Assuming $m_t=178$ GeV. Result is for at least one b-tag. For at least two b-tagged jets, the cross section is $11.1^{+2.3}_{-1.9} + 2.5_{-1.9}$ pb.

 29 ABAZOV 05Q measures the top-quark pair production cross section with \sim 230 pb $^{-1}$ of data, based on the analysis of W plus n-jet events where W decays into e or μ plus neutrino, and at least one of the jets is b-jet like. The first error is statistical and systematic, and the second accounts for the luminosity uncertainty. The result assumes $m_t=175$ GeV; the mean value changes by $(175-m_t({
m GeV}))$ imes 0.06 pb in the mass range 160 to 190 GeV.

 30 ABAZOV 05R measures the top-quark pair production cross section with 224–243 pb $^{-1}$ of data, based on the analysis of events with two charged leptons in the final state. The result assumes $m_t=175~{\rm GeV}$; the mean value changes by $(175-m_t({\rm GeV}))\times 0.08~{\rm pb}$ in the mass range 160 to 190 GeV. ³¹ Based on 230 pb $^{-1}$. Assuming $m_t = 175$ GeV.

 32 Based on 194 pb $^{-1}$. Assuming $m_t = 175$ GeV.

 33 Based on 194 \pm 11 pb $^{-1}$. Assuming $m_t=175$ GeV.

 $^{34}\,\mathrm{Based}$ on $162\pm10~\mathrm{pb}^{-1}.$ Assuming $m_t=175~\mathrm{GeV}.$

 35 ACOSTA 05V measures the top-quark pair production cross section with $\sim 162~{
m pb}^{-1}$ data, based on the analysis of W plus n-jet events where W decays into e or μ plus neutrino, and at least one of the jets is b-jet like. Assumes $m_{ extbf{t}}=175$ GeV.

 36 ACOSTA 041 measures the top-quark pair production cross section with 197 \pm 12 pb $^{-1}$ data, based on the analysis of events with two charged leptons in the final state. Assumes $m_t = 175 \text{ GeV}.$

NODE=Q007TX;LINKAGE=AA

NODE=Q007TX;LINKAGE=ZV

NODE=Q007TX;LINKAGE=AV

NODE=Q007TX;LINKAGE=BZ

NODE=Q007TX;LINKAGE=BV

NODE=Q007TX;LINKAGE=AL

NODE=Q007TX;LINKAGE=NE

NODE=Q007TX;LINKAGE=ZO

NODE=Q007TX;LINKAGE=VO

NODE=Q007TX;LINKAGE=ZA NODE=Q007TX;LINKAGE=BO

NODE=Q007TX;LINKAGE=UL

NODE=Q007TX;LINKAGE=BU

NODE=Q007TX;LINKAGE=AU

NODE=Q007TX;LINKAGE=AE

NODE=Q007TX;LINKAGE=AB

NODE=Q007TX;LINKAGE=AZ

NODE=Q007TX;LINKAGE=AO NODE=Q007TX;LINKAGE=AC NODE=Q007TX;LINKAGE=AT NODE=Q007TX;LINKAGE=AS NODE=Q007TX;LINKAGE=CO

NODE=Q007TX;LINKAGE=CA

Ratio of the Production Cross Sections of $t\bar{t}\gamma$ to $t\bar{t}$ at $\sqrt{s}=1.96$ TeV DOCUMENT ID _____TECN___COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

 1 AALTONEN 112 CDF $E_{T}(\gamma) > 10$ GeV, $|\eta(\gamma)| < 1.0$ 0.024 ± 0.009

 $^{
m 1}$ Based on 6.0 fb $^{
m -1}$ of data. The error is statistical and systematic combined. Events with lepton $+ \not\!\!E_T + \ge$ 3 jets(\ge 1b) with and without central, high E_T photon are measured. The result is consistent with the SM prediction of 0.024 ± 0.005 . The absolute production cross section is measured to be 0.18 \pm 0.08 fb. The statistical significance is 3.0 standard deviations.

$t\bar{t}$ Production Cross Section in pp Collisions at $\sqrt{s}=7$ TeV

Unless otherwise noted the first quoted error is from statistics, the second from systematic uncertainties, and the third from luminosity. If only two errors are quoted the luminosity is included in the systematic uncertainties.

DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

194 \pm 18 \pm 46 177 \pm 20 \pm 14 \pm 7		$ au_{m h} + ot \!$
176 \pm 5 $^{+14}_{-11}$ \pm 8	2	$\ell\ell+ ot\!$
187 $\pm 11 {}^{+18}_{-17} \pm 6$	⁴ AAD 12B0 ATLS	$\ell + E_T + \geq $ 3j with \emph{b} -tag
$186 \pm 13 \pm 20 \pm 7$ $143 \pm 14 \pm 22 \pm 3$	⁵ AAD 12CG ATLS ⁶ CHATRCHYAN 12AC CMS	$\ell + au_{m h} + ot E_T + \ge 2 \mathrm{j} \; (\ge 1 b) \ \ell + au_{m h} + ot E_T + \ge 2 \mathrm{j} \; (\ge 1 b)$
$161.9 \pm \ 2.5 {+\atop -}\ {5.1\atop 5.0} \pm \ 3.6$	⁷ CHATRCHYAN 12AX CMS	
145 $\pm 31 \begin{array}{c} +42 \\ -27 \end{array}$	⁸ AAD 11A ATLS	$\ell + E_T + \geq$ 4j, $\ell \ell + E_T + \geq$ 2j
$173 \begin{array}{c} +39 \\ -32 \end{array} \pm \ 7$	⁹ CHATRCHYAN 11AA CMS	$\ell + ot\!$
$168 \pm 18 \pm 14 \pm 7$ $154 \pm 17 \pm 6$	10 CHATRCHYAN11F CMS 11 CHATRCHYAN11Z CMS	$\ell\ell+ ot\!$

 $^{^{1}\,\}mathrm{Based}$ on 1.67 fb $^{-1}$ of data. The result uses the acceptance for $m_t=$ 172.5 GeV.

 12 KHACHATRY...11A CMS $\ell\ell+E_T+\geq 2$ jets

 $194 \pm 72 \pm 24 \pm 21$

tt Production Cross Section in pp Collisions at $\sqrt{s} = 7$ TeV

_ <u>TECN</u> <u>C</u>OMMENT DOCUMENT ID VALUE (pb) ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

<1.7 95
1
 AAD 12BE ATLS $\ell^+\ell^+ + \not\!\!\!E_T + \geq 2 \mathbf{j} + \mathrm{HT}$

NODE=Q007TTA NODE=Q007TTA

NODE=Q007TTA;LINKAGE=AA

NODE=Q007TX7 NODE=Q007TX7

NODE=Q007TX7

NODE=Q007TX7;LINKAGE=GD NODE=Q007TX7;LINKAGE=DA NODE=Q007TX7;LINKAGE=AD

NODE=Q007TX7;LINKAGE=GA

NODE=Q007TX7;LINKAGE=AG

NODE=Q007TX7;LINKAGE=CC

NODE=Q007TX7;LINKAGE=CR

NODE=Q007TX7;LINKAGE=AA

NODE=Q007TX7;LINKAGE=CH

NODE=Q007TX7;LINKAGE=CA

NODE=Q007TX7;LINKAGE=CT

NODE=Q007TX7;LINKAGE=KH

NODE=Q007TP7 NODE=Q007TP7

NODE=Q007TP7:LINKAGE=AA

 $^{^2}$ Based on 35 pb $^{-1}$ of data for an assumed top quark mass of $m_t=$ 172.5 GeV.

 $^{^3}$ Based on 0.70 fb $^{-1}$ of data. The 3 errors are from statistics, systematics, and luminosity. The result uses the acceptance for $m_{t}=172.5~\mathrm{GeV}.$

 $^{^4\}mathrm{Based}$ on 35 pb $^{-1}$ of data. The 3 errors are from statistics, systematics, and luminosity. The result uses the acceptance for $m_t=172.5$ GeV and $173\pm17^{+18}_{-16}\pm6$ pb is found without the b-tag.

 $^{^5}$ Based on 2.05 fb $^{-1}$ of data. The hadronic au candidates are selected using a BDT technique. The 3 errors are from statistics, systematics, and luminosity. The result uses the acceptance for $m_t=172.5~{\rm GeV}.$

 $^{^6}$ Based on 2.0 fb $^{-1}$ and 2.2 fb $^{-1}$ of data for $\ell=e$ and $\ell=\mu$, respectively. The 3 errors are from statistics, systematics, and luminosity. The result uses the acceptance for m_{t}

 $^{^7\}mathrm{Based}$ on 2.3 fb $^{-1}$ of data. The 3 errors are from statistics, systematics, and luminosity. The result uses the profile likelihood-ratio (PLB) method and an assumed m_{t} of 172.5

⁸Based on 2.9 pb $^{-1}$ of data. The result for single lepton channels is 142 \pm 34 $^{+50}_{-31}$ pb, while for the dilepton channels is $151 {+} 78 {+} 37 \\ -62 {-} 24$ pb

 $^{^9}$ Result is based on 36 pb $^{-1}$ of data. The first uncertainty corresponds to the statistical and systematic uncertainties, and the second corresponds to the luminosity.

 $^{^{10}\,\}mathrm{Based}$ on 36 pb $^{-1}$ of data. The ratio of $t\,\overline{t}$ and Z/γ^* cross sections is measured as $\sigma(pp\to t\bar t)/\sigma(pp\to Z/\gamma^*\to e^+e^-/\mu^+\mu^-)=0.175\pm0.018 ({\rm stat})\pm0.015 ({\rm syst})$ for 60 < $m_{\ell\,\ell}<$ 120 GeV, for which they use an NNLO prediction for the denominator cross section of 972 \pm 42 pb.

 $^{^{11}\}mathrm{Result}$ is based on 36 pb^{-1} of data. The first error is from statistical and systematic uncertainties, and the second from luminosity. This is a combination of a measurement in the dilepton channel (CHATRCHYAN 11F) and the measurement in the $\ell+{\sf jets}$ channel (CHATRCHYAN 11z) which yields 150 \pm 9 \pm 17 \pm 6 pb.

 $^{^{12}}$ Result is based on 3.1 \pm 0.3 pb $^{-1}$ of data.

 $^{^{1}}$ Based on 1.04 fb $^{-1}$ of data at LHC7. The upper bounds are the same for LL, LR and RR chiral components of the two top quarks.

$f(Q_0)$: $t\bar{t}$ Fraction of Events with a Veto on Additional Central Jet Activity in pp Collisions at $\sqrt{s}=7$ TeV

DOCUMENT ID TECN COMMENT \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet ¹ AAD

 $56.4 \pm 1.3 ^{+2.6}_{-2.8}$ 12BL ATLS $Q_0=25$ GeV (|y|<2.1) 1 AAD $84.7 \pm 0.9 \pm 1.0$ 12BL ATLS $Q_0 = 75 \text{ GeV } (|y| < 2.1)$ $95.2^{+0.5}_{-0.6}\pm0.4$ ¹ AAD 12BL ATLS $Q_0 = 150 \text{ GeV } (|y| < 2.1)$

$t\, ar t$ Charge Asymmetry (A_C) in $p\, p$ Collisions at $\sqrt s=7$ TeV

 $A_C = (N(\Delta|y|>0) - N(\Delta|y|<0)) / (N(\Delta|y|>0) + N(\Delta|y|<0))$ where $\Delta|y|$ $= |y_t| - |y_{\overline{t}}|$ is the difference between the absolute values of the top and antitop rapidities and N is the number of events with $\Delta |y|$ positive or negative.

DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • •

¹ AAD $-1.9\pm2.8\pm2.4$ 2 CHATRCHYAN 12BB CMS $\ell+E_T+\geq 4$ j (≥ 1 b) $0.4\pm 1.0\pm 1.1$ $-1.3\pm2.8^{+2.9}_{-3.1}$ ³ CHATRCHYAN 12BS CMS $\ell + \cancel{E}_T + \ge 4j \ (\ge 1b)$

$gg \rightarrow t\bar{t}$ Fraction in $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV

CL% DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AALTONEN 09F CDF < 0.33 ² AALTONEN $0.07 \pm 0.14 \pm 0.07$ 08AG CDF low p_T number of tracks

A_{FB} of $t\bar{t}$ in $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV

VALUE (%)	DOCUMENT ID	TECN	COMMENT
ullet $ullet$ We do not use the foll	owing data for average	es, fits, li	imits, etc. • • •

11.8± 3.2	$^{ m 1}$ ABAZOV	13A D0	A_{FB}^ℓ from $\ell\ell$ & $\ell+$ jets comb.
$-11.6 \!\pm\! 15.3$	² AALTONEN	11F CDF	$m_{t\bar{t}} < 450 \text{ GeV}$
47.5 ± 11.4	² AALTONEN	11F CDF	$m_{t \overline{t}} > 450 \text{GeV}$
$19.6\pm~6.5$	³ ABAZOV	11AH D0	$\ell+ ot\!$
17 ± 8	⁴ AALTONEN	08AB CDF	$p\overline{p}$ frame
24 ± 14	⁴ AALTONEN	08AB CDF	$t\overline{t}$ frame
12 \pm 8 ± 1	⁵ ABAZOV	08L D0	$\ell + ot\!$

 $^{^1}$ Based on 5.4 fb $^{-1}$ of data. ABAZOV 13A studied the dilepton channel of the $t\bar{t}$ events and measured the leptonic forward-backward asymmetry to be A $_{FB}^{\ell}=$ 5.8 \pm 5.1 \pm 1.3%, which is consistent with the SM (QCD+EW) prediction of $4.7\pm0.1\%$. The result is obtained after combining the measurement (15.2 \pm 4.0%) in the ℓ + jets channel ABAZOV 11AH. The top quark helicity is measured by using the neutrino weighting method to be consistent with zero in both dilepton and ℓ + jets channels.

NODE=Q007FQ7

NODE=Q007FQ7

OCCUR=2 OCCUR=3

NODE=Q007FQ7;LINKAGE=AA

NODE=Q007AC7 NODE=Q007AC7

NODE=Q007AC7

NODE=Q007AC7;LINKAGE=AA

NODE=Q007AC7;LINKAGE=CH NODE=Q007AC7;LINKAGE=CA

NODE=Q007TXG NODE=Q007TXG

NODE=Q007TXG;LINKAGE=LT

NODE=Q007TXG;LINKAGE=AA

NODE=Q007TFB NODE=Q007TFB

OCCUR=2

OCCUR=2

NODE=Q007TFB;LINKAGE=AZ

NODE=Q007TFB;LINKAGE=AL

NODE=Q007TFB;LINKAGE=BZ

NODE=Q007TFB;LINKAGE=AA

¹Based on 2.05 fb⁻¹ of data. The $t\bar{t}$ events are selected in the dilepton decay channel with two identified b-jets.

 $^{^1}$ Based on 1.04 fb $^{-1}$ of data. The result is consistent with A $_C=$ 0.006 \pm 0.002 (MC at NLO). No significant dependence of A $_C$ on $m_{t\,\overline{t}}$ is observed.

 $^{^2}$ Based on 5.0 $\rm fb^{-1}$ of data at 7 TeV. 3 Based on 1.09 $\rm fb^{-1}$ of data. The result is consistent with the SM predictions.

 $^{^{1}}$ Based on 955 pb $^{-1}$. AALTONEN 09F used differences in the $t\bar{t}$ production angular distribution and polarization correlation to descriminate between $g\,g \to t\, \overline{t}$ and $q\, \overline{q} \to t\, \overline{t}$ $t \bar t$ subprocesses. The combination with the result of AALTONEN 08AG gives $0.07 {+0.15 \atop -0.07}$

²Result is based on 0.96 fb⁻¹ of data. The contribution of the subprocesses $gg \rightarrow t\bar{t}$ and $q \, \overline{q} \to t \, \overline{t}$ is distinguished by using the difference between quark and gluon initiated jets in the number of small p_T (0.3 GeV $<~p_T~<$ 3 GeV) charged particles in the central region ($|\eta| < 1.1$).

 $^{^2\}mathrm{Based}$ on 5.3 fb^{-1} of data. The error is statistical and systematic combined. Events with lepton $+ \not\!\!E_T + \ \ge$ 4jets($\ge 1b$) are used. AALTONEN 11F also measures the asymmetry as a function of the rapidity difference $|\mathbf{y}_t - \mathbf{y}_{\overline{t}}|$. The NLO QCD predictions [MCFM] are (4.0 \pm 0.6)% and (8.8 \pm 1.3)% for $m_{t \, \overline{t}}$ < 450 and > 450 GeV, respectively.

 $^{^3}$ Based on 5.4 fb $^{-1}$ of data. The error is statistical and systematic combined. The quoted asymmetry is obtained after unfolding to be compared with the MC@NLO prediction of $(5.0\pm0.1)\%$. No significant difference between the $m_{t\,\bar{t}}<450$ and >450 GeV data samples is found. A corrected asymmetry based on the lepton from a top quark decay of $(15.2 \pm 4.0)\%$ is measured to be compared to the MC@NLO prediction of $(2.1 \pm 0.1)\%$.

 $^{^4}$ Result is based on 1.9 fb $^{-1}$ of data. The FB asymmetry in the $t\bar{t}$ events has been measured in the $\ell+$ jets mode, where the lepton charge is used as the flavor tag. The asymmetry in the $p\overline{p}$ frame is defined in terms of $\cos(\theta)$ of hadronically decaying t-quark

NODE=Q007TQ

NODE=Q007

momentum, whereas that in the $t\,\overline{t}$ frame is defined in terms of the t and \overline{t} rapidity difference. The results are consistent ($\leq 2 \sigma$) with the SM predictions.

Sesult is based on 0.9 fb $^{-1}$ of data. The asymmetry in the number of $t\bar{t}$ events with $y_t>y_{\bar{t}}$ and those with $y_t< y_{\bar{t}}$ has been measured in the lepton + jets final state. The observed value is consistent with the SM prediction of 0.8% by MC@NLO, and an upper bound on the $Z' \to t\bar{t}$ contribution for the SM Z-like couplings is given in Fig. 2 for 350 GeV $< m_{Z^\prime} < 1$ TeV.

NODE=Q007TFB;LINKAGE=AB

t-Quark Electric Charge

DOCUMENT ID TECN COMMENT NODE=Q007TQ

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

¹ AALTONEN 10s CDF

² ABAZOV fraction of |q|=4e/3 pair 07C D0

 $^{
m 1}$ AALTONEN 10S excludes the charge -4/3 assignment for the top quark [CHANG 99] at 95%CL, using 2.7 fb $^{-1}$ of data in $p\overline{p}$ collisions at $\sqrt{s}=$ 1.96 TeV. Result is obtained by reconstructing $t\bar{t}$ events in the lepton + jets final state, where b-jet charges are tagged by the SLT (soft lepton tag) algorithm.

 2 ABAZOV 07C reports an upper limit ho < 0.80 (90% CL) on the fraction ho of exotic quark pairs $Q\overline{Q}$ with electric charge $|{\bf q}|=4{\bf e}/3$ in $t\overline{t}$ candidate events with high p_T lepton, missing E_T and ≥ 4 jets. The result is obtained by measuring the fraction of events in which the quark pair decays into $W^- + b$ and $W^+ + \overline{b}$, where b and \overline{b} jets are discriminated by using the charge and momenta of tracks within the jet cones. The maximum CL at which the model of CHANG 99 can be excluded is 92%. Based on 370 pb^{-1} of data at $\sqrt{s} = 1.96$ TeV.

NODE=Q007TQ;LINKAGE=AA

NODE=Q007TQ;LINKAGE=AB

t-Quark REFERENCES

AAD G. Aad et al. V.M. Abazov et al. (ATLAS Collab.) REFID=54964 13X FP1 C73 2328 REFID=54855 REFID=54835 PR D87 011103 (D0 Collab. ABAZOV 13A CHATRCHYAN 13C PRL 110 022003 S. Chatrchyan et al. (CMS Collab. REFID=54842 REFID=54068 REFID=54458 REFID=54466 PL B718 1252 PL B707 459 CHATRCHYAN 13F Chatrchyan et al. CMS Collab. (ATLAS Collab. AAD 12B Aad et al. 12BE JHEP 1204 069 12BF JHEP 1205 059 AAD Aad et al. ATLAS Collab Aad et al. (ATLAS Collab. (ATLAS Collab. AAD G. G. AAD 12BG JHEP 1206 088 Aad et al. 12BK EPJ C72 2039 12BL EPJ C72 2043 12BO PL B711 244 G. G. G. REFID=54522 REFID=54523 AAD Aad et al. ATLAS Collab. (ATLAS Collab. (ATLAS Collab. AAD Aad et al. Aad et al. REFID=54543 AAD REFID=54545 REFID=54580 REFID=54685 AAD 12BP PL B712 351 Aad et al. (ATLAS Collab. 12BT JHEP 1209 139 12CG PL B717 89 Aad et al. Aad et al. (ATLAS Collab. (ATLAS Collab. AAD G. G. AAD (ATLAS Collab. (ATLAS Collab. (ATLAS Collab. (CDF Collab. (CDF Collab. 12CH PL B717 330 12I EPJ C72 2046 12AI PRL 109 152003 G. Aad et al.
G. Aad et al.
T. Aaltonen et al. REFID=54686 REFID=54125 REFID=54597 AAD AAD AALTONEN REFID=54600 REFID=54700 REFID=54192 AALTONEN 12AL PRL 109 192001 Aaltonen et al. (CDF, D0 Collab.) (CDF Collab.) (CDF, D0 Collab.) AALTONEN 12AP PR D86 092003 Aaltonen et al. AALTONEN 12G PL B714 24 Aaltonen et al. REFID=54365 REFID=54604 REFID=54012 AALTONEN 12Z PR D85 071106 Aaltonen et al. (D0 Collab. (D0 Collab. ABAZOV 12AB PR D86 051103 V.M. Abazov et al. PRL 108 032004 ARAZOV 12B V.M. Abazov et al. REFID=54067 REFID=54185 REFID=54349 PL B708 21 V.M. Abazov et al. ABAZOV 12E (D0 Collab. (D0 Collab. (D0 Collab. ABAZOV 12I PL B713 165 V.M. Abazov et al. 12T PR D85 091104 V.M. Abazov et al. REFID=544349 REFID=54497 REFID=54657 REFID=54677 REFID=54687 REFID=54779 REFID=54819 REFID=54841 REFID=16407 REFID=53800 REFID=53904 ARAZOV CHATRCHYAN 12AC PR D85 112007 Chatrchyan et al. (CMS Collab. CHATRCHYAN 12AX JHEP 1211 067 CHATRCHYAN 12BA EPJ C72 2202 CHATRCHYAN 12BB PL B717 129 Chatrchyan et al. CMS Collab Chatrchyan et al. Chatrchyan et al. CMS Collab. CHATRCHYAN 12BP JHEP 1212 105 CHATRCHYAN 12BQ JHEP 1212 035 Chatrchyan et al. CMS Collab. Chatrchyan et al. CMS Collab. CHATRCHYAN 12BS PL B709 28 Chatrchyan et al. CMS Collab. CHATRCHYAN 12Y JHEP 1206 109 Chatrchyan et al. (CMS Collab. EPJ C71 1577 PR D84 071105 Aad *et al.* Aaltonen *et al* (ATLAS Collab. (CDF Collab. AAD AALTONEN 11A 11AC REFID=53944 REFID=54054 REFID=16427 AALTONEN PRL 107 232002 Aaltonen et al. (CDF Collab. 11AK AALTONEN 11AR PR D83 031104 Aaltonen et al. CDF Collab CDF Collab. AALTONEN PR D83 071102 11D Aaltonen et al REFID=10427 REFID=16429 REFID=16431 REFID=16441 REFID=16459 Aaltonen et al. (CDF Collab. AALTONEN PR D83 111101 11E AALTONEN PR D83 112003 Aaltonen et al. CDF Collab AALTONEN 11K PRL 106 152001 PL B698 371 Aaltonen et al. Aaltonen et al. CDF Collab AALTONEN 11T (CDF Collab. REFID=53770 REFID=53771 REFID=53772 AALTONEN PR D84 031101 Aaltonen et al. CDF Collab. 11Y 11Z Aaltonen et al. Aaltonen et al. (CDF Collab. (CDF Collab. AALTONEN PR D84 032003 AALTONEN PR D84 031104 REFID=53564 REFID=53820 ABAZOV PL B695 88 V.M. Abazov et al. (D0 Collab. V.M. Abazov et al. ABAZOV 11AA PL B705 313 (D0 Collab. 11AD PR D84 112001 V.M. Abazov et al. REFID=53985 ABAZOV D0 Collab. REFID=54002 REFID=54003 REFID=54022 ABAZOV PRL 107 032001 V.M. Abazov et al. D0 Collab. 11AF PL B702 16 11AH PR D84 112005 (D0 Collab. (D0 Collab. ABAZOV V.M. Abazov et al. ABAZOV V.M. Abazov et al. REFID=54022 REFID=53617 REFID=16463 REFID=16467 REFID=53708 REFID=53710 ABAZOV 11B PRL 106 022001 V.M. Abazov et al. D0 Colalb. ABAZOV 11C PR D83 032009 V.M. Abazov et al. D0 Collab. PR D84 012008 ABAZOV 11E V.M. Abazov et al. (D0 Collab. ABAZOV PL B701 313 V.M. Abazov et al. D0 Collab. PR D84 032004 ABAZOV 11P V M Abazov et al. D0 Collab. PRL 107 082004 11R Abazov et al. D0 Collab. ABAZOV V.M. REFID=53782 REFID=53795 V.M. Abazov et al. ABAZOV PL B703 422 (D0 Collab.) 11S ABAZOV PR D84 052005 Abazov et al. (D0 Collab. REFID=53817 PRL 107 121802 (D0 Collab.) ABAZOV V.M. Abazov et al.

ABAZOV	11Z	PL B704 403	V.M. Abazov et al.	(D0 Collab.)	REFID=53819
CHATRCHYAN	11AA	EPJ C71 1721	S. Chatrchyan et al.	(CMS Collab.)	REFID=53957
CHATRCHYAN	11F	JHEP 1107 049	S. Chatrchyan et al.	(CMS Collab.)	REFID=16357
CHATRCHYAN		PRL 107 091802	S. Chatrchyan et al.	(CMS Collab.)	REFID=53777
					REFID=53890
CHATRCHYAN		PR D84 092004	S. Chatrchyan et al.	(CMS Collab.)	
KHACHATRY		PL B695 424	V. Khachatryan <i>et al.</i>	(CMS Collab.)	REFID=53620
AALTONEN	10AA	PR D82 052002	T. Aaltonen <i>et al.</i>	(CDF Collab.)	REFID=53478
AALTONEN	10AB	PR D82 112005	T. Aaltonen et al.	(CDF Collab.)	REFID=53558
AALTONEN		PRL 105 232003	T. Aaltonen et al.	(CDF Collab.)	REFID=53559
AALTONEN		PRL 105 252001			REFID=53561
			T. Aaltonen et al.	(CDF Collab.)	
AALTONEN	10C	PR D81 031102	T. Aaltonen et al.	(CDF Collab.)	REFID=53266
AALTONEN	10D	PR D81 032002	T. Aaltonen <i>et al.</i>	(CDF Collab.)	REFID=53267
AALTONEN	10E	PR D81 052011	T. Aaltonen et al.	(CDF Collab.)	REFID=53268
AALTONEN	10Q	PRL 105 042002	T. Aaltonen et al.	(CDF Collab.)	REFID=53316
AALTONEN	10\$	PRL 105 101801	T. Aaltonen <i>et al.</i>	(CDF Collab.)	REFID=53368
				3 : : (
AALTONEN	10U	PR D81 072003	T. Aaltonen et al.	(CDF Collab.)	REFID=53394
AALTONEN	10V	PR D81 092002	T. Aaltonen <i>et al.</i>	(CDF Collab.)	REFID=53401
AALTONEN	10W	PRL 105 012001	T. Aaltonen <i>et al.</i>	(CDF Collab.)	REFID=53410
ABAZOV	10	PL B682 363	V.M. Abazov et al.	(D0 Collab.)	REFID=53205
ABAZOV	101	PR D82 032002	V.M. Abazov et al.	(D0 Collab.)	REFID=53406
ABAZOV	10J	PL B690 5	V.M. Abazov et al.		REFID=53420
				(D0 Collab.)	
ABAZOV	10K	PL B693 81	V.M. Abazov et al.	(D0 Collab.)	REFID=53424
ABAZOV	10Q	PR D82 071102	V.M. Abazov et al.	(D0 Collab.)	REFID=53479
AHRENS	10	JHEP 1009 097	V. Ahrens et al.	(MANZ, HEIDH)	REFID=54050
AHRENS	10A	NPBPS 205-206 48	V. Ahrens et al.	(MANZ, HEIDH)	REFID=54051
AALTONEN		PR D79 112007	T. Aaltonen <i>et al.</i>	(CDF Collab.)	REFID=52946
					REFID=53018
AALTONEN		PR D80 051104	T. Aaltonen <i>et al.</i>	(CDF Collab.)	
AALTONEN		PR D80 052001	T. Aaltonen et al.	(CDF Collab.)	REFID=53019
AALTONEN	09AT	PRL 103 092002	T. Aaltonen <i>et al.</i>	(CDF Collab.)	REFID=53092
AALTONEN	09F	PR D79 031101	T. Aaltonen et al.	(CDF Collab.)	REFID=52800
AALTONEN	09H	PR D79 052007	T. Aaltonen et al.	(CDF Collab.)	REFID=52802
AALTONEN	09J	PR D79 072001	T. Aaltonen <i>et al.</i>	(CDF Collab.)	REFID=52804
AALTONEN	09K	PR D79 072010	T. Aaltonen <i>et al.</i>	(CDF Collab.)	REFID=52805
AALTONEN	09L	PR D79 092005	T. Aaltonen <i>et al.</i>	(CDF Collab.)	REFID=52806
AALTONEN	09M	PRL 102 042001	T. Aaltonen <i>et al.</i>	(CDF Collab.)	REFID=52852
AALTONEN	09N	PRL 102 151801	T. Aaltonen et al.	(CDF Collab.)	REFID=52853
AALTONEN	090	PRL 102 152001	T. Aaltonen et al.	(CDF Collab.)	REFID=52854
AALTONEN	09Q		T. Aaltonen <i>et al.</i>	(CDF Collab.)	REFID=52856
		PL B674 160			
AALTONEN	09X	PR D79 072005	T. Aaltonen et al.	(CDF Collab.)	REFID=52881
AARON	09A	PL B678 450	F.D. Aaron et al.	(H1 Collab.)	REFID=52915
ABAZOV	09AA	PRL 103 132001	V.M. Abazov et al.	(D0 Collab.)	REFID=53028
ABAZOV	09AG	PR D80 071102	V.M. Abazov et al.	(D0 Collab.)	REFID=53066
ABAZOV		PR D80 092006	V.M. Abazov et al.	(D0 Collab.)	REFID=53080
ABAZOV	09J	PRL 102 092002	V.M. Abazov et al.	(D0 Collab.)	REFID=52863
ABAZOV	09R	PL B679 177	V.M. Abazov et al.	(D0 Collab.)	REFID=52920
ABAZOV	09Z	PRL 103 092001	V.M. Abazov et al.	(D0 Collab.)	REFID=53007
LANGENFELD	09	PR D80 054009	U. Langenfeld, S. Moch, P. Uwer		REFID=54049
AALTONEN	08AB	PRL 101 202001	T. Aaltonen et al.	(CDF Collab.)	REFID=52562
AALTONEN		PRL 101 192002	T. Aaltonen et al.	(CDF Collab.)	REFID=52564
AALTONEN		PR D78 111101	T. Aaltonen <i>et al.</i>		REFID=52623
				(CDF Collab.)	
AALTONEN		PRL 101 252001	T. Aaltonen et al.	(CDF Collab.)	REFID=52627
AALTONEN	08C	PRL 100 062005	T. Aaltonen <i>et al.</i>	(CDF Collab.)	REFID=52193
ABAZOV	HA80	PRL 101 182001	V.M. Abazov et al.	(D0 Collab.)	REFID=52548
ABAZOV	IA80	PRL 101 221801	V.M. Abazov et al.	(D0 Collab.)	REFID=52549
ABAZOV	08B	PRL 100 062004	V.M. Abazov et al.	(D0 Collab.)	REFID=52183
ABAZOV	081	PR D78 012005	V.M. Abazov et al.	(D0 Collab.)	REFID=52387
			V.M. Abazov et al.	(D0 Collab.)	
ABAZOV	08L	PRL 100 142002		,	REFID=52390
ABAZOV	M80	PRL 100 192003	V.M. Abazov et al.	(D0 Collab.)	REFID=52391
ABAZOV	08N	PRL 100 192004	V.M. Abazov et al.	(D0 Collab.)	REFID=52392
ABULENCIA	80	PR D78 012003	A. Abulencia et al.	(CDF Collab.)	REFID=52413
CACCIARI	80	JHEP 0809 127	M. Cacciari et al.	,	REFID=54052
KIDONAKIS	08	PR D78 074005	N. Kidonakis, R. Vogt		REFID=54053
MOCH	08	PR D78 034003	S. Moch, P. Uwer	(BERL, KARLE)	REFID=54048
					REFID=51684
AALTONEN	07	PRL 98 142001	T. Aaltonen et al.	(CDF Collab.)	
AALTONEN	07B	PR D75 111103	T. Aaltonen et al.	(CDF Collab.)	REFID=51802
AALTONEN	07D	PR D76 072009	T. Aaltonen et al.	(CDF Collab.)	REFID=51996
AALTONEN	07I	PRL 99 182002	T. Aaltonen <i>et al.</i>	(CDF Collab.)	REFID=52044
ABAZOV	07C	PRL 98 041801	V.M. Abazov et al.	(D0 Collab.)	REFID=51681
ABAZOV	07D	PR D75 031102	V.M. Abazov et al.	(D0 Collab.)	REFID=51682
ABAZOV	07F	PR D75 092001	V.M. Abazov et al.	(D0 Collab.)	REFID=51792
ABAZOV	07H	PRL 98 181802	V.M. Abazov et al.	(D0 Collab.)	REFID=51807
ABAZOV	070	PR D76 052006	V.M. Abazov et al.	(D0 Collab.)	REFID=51975
ABAZOV	07P	PR D76 072007	V.M. Abazov et al.	(D0 Collab.)	REFID=51995
ABAZOV	07R	PR D76 092007	V.M. Abazov et al.	(D0 Collab.)	REFID=52003
ABAZOV	07V	PRL 99 191802	V.M. Abazov et al.	(D0 Collab.)	REFID=52018
ABAZOV	07W	PL B655 7	V.M. Abazov et al.	(D0 Collab.)	REFID=52026
ABULENCIA	07D	PR D75 031105	A. Abulencia et al.	(CDF Collab.)	REFID=51683
				(CDF Collab.)	REFID=51736
ABULENCIA	07G	PRL 98 072001	A. Abulencia et al.		
ABULENCIA	071	PR D75 052001	A. Abulencia <i>et al.</i>	(CDF Collab.)	REFID=51780
ABULENCIA	07J	PR D75 071102	A. Abulencia et al.	(CDF Collab.)	REFID=51783
ABAZOV	06K	PL B639 616	V.M. Abazov et al.	(D0 Collab.)	REFID=51377
ABAZOV	06U	PR D74 092005	V.M. Abazov et al.	(D0 Collab.)	REFID=51503
ABAZOV	06X	PR D74 112004	V.M. Abazov et al.	(D0 Collab.)	REFID=51604
ABULENCIA	06D	PRL 96 022004	A. Abulencia et al.	(CDF Collab.)	REFID=51102
Also	550		A. Abulencia et al.		REFID=51102
		PR D73 032003		(CDF Collab.)	
Also	000	PR D73 092002	A. Abulencia et al.	(CDF Collab.)	REFID=51306
ABULENCIA	06G	PRL 96 152002	A. Abulencia et al.	(CDF Collab.)	REFID=51104
Also		PR D74 032009	A. Abulencia et al.	(CDF Collab.)	REFID=51329
ABULENCIA	06R	PL B639 172	A. Abulencia et al.	(CDF Collab.)	REFID=51264
ABULENCIA	06U	PR D73 111103	A. Abulencia et al.	(CDF Collab.)	REFID=51277
ABULENCIA	06V	PR D73 112006	A. Abulencia et al.	(CDF Collab.)	REFID=51285
ABULENCIA	06Z	PRL 97 082004	A. Abulencia et al.	(CDF Collab.)	REFID=51344
		PRL 96 202002		(CDF Collab.)	REFID=51344
ABULENCIA,A	UUC	I INL 90 202002	A. Abulencia et al.	(CDF Collab.)	VELID=214//

ABULENCIA, A	06E	PR D74 072005	A. Abulencia et al.	(CDF Collab.)	REFID=51539
ABULENCIA, A		PR D74 072006	A. Abulencia et al.	(CDF Collab.)	REFID=51540
ABAZOV	05	PL B606 25	V.M. Abazov et al.	(D0 Collab.)	REFID=50386
ABAZOV	05G	PL B617 1	V.M. Abazov et al.	(D0 Collab.)	REFID=50613
ABAZOV	05L	PR D72 011104	V.M. Abazov et al.		REFID=50703
				(D0 Collab.)	
ABAZOV	05P	PL B622 265	V.M. Abazov et al.	(D0 Collab.)	REFID=50872
Also		PL B517 282	V.M. Abazov et al.	(D0 Collab.)	REFID=48381
Also		PR D63 031101	B. Abbott et al.	(D0 Collab.)	REFID=48048
Also		PR D75 092007	V.M. Abazov et al.	(D0 Collab.)	REFID=51797
ABAZOV	05Q	PL B626 35	V.M. Abazov et al.	(D0 Collab.)	REFID=50883
ABAZOV	05R	PL B626 55	V.M. Abazov et al.	(D0 Collab.)	REFID=50882
ABAZOV	05X	PL B626 45	V.M. Abazov et al.	(D0 Collab.)	REFID=51116
					REFID=50564
ACOSTA	05A	PRL 95 102002	D. Acosta et al.	(CDF Collab.)	
ACOSTA	05D	PR D71 031101	D. Acosta et al.	(CDF Collab.)	REFID=50615
ACOSTA	05N	PR D71 012005	D. Acosta et al.	(CDF Collab.)	REFID=50887
ACOSTA	05S	PR D72 032002	D. Acosta <i>et al.</i>	(CDF Collab.)	REFID=51117
ACOSTA	05T	PR D72 052003	D. Acosta et al.	(CDF Collab.)	REFID=51118
ACOSTA	05U	PR D71 072005	D. Acosta et al.	(CDF Collab.)	REFID=51119
ACOSTA	05V	PR D71 052003	D. Acosta et al.	(CDF Collab.)	REFID=51121
ABAZOV	04G	NAT 429 638	V.M. Abazov et al.	(D0 Collab.)	REFID=50556
ABDALLAH	04C	PL B590 21	J. Abdallah <i>et al.</i>	(DELPHI Collab.)	REFID=49907
	-				
ACOSTA	04H	PR D69 052003	D. Acosta et al.	(CDF Collab.)	REFID=50886
ACOSTA	041	PRL 93 142001	D. Acosta et al.	(CDF Collab.)	REFID=51120
AKTAS	04	EPJ C33 9	A. Aktas <i>et al.</i>	(H1 Collab.)	REFID=49845
ABAZOV	03A	PR D67 012004	V.M. Abazov et al.	(D0 Collab.)	REFID=52194
CHEKANOV	03	PL B559 153	S. Chekanov et al.	(ZÈUS Collab.)	REFID=49387
ACHARD	02J	PL B549 290	P. Achard et al.	` (L3 Collab.)	REFID=49092
ACOSTA	02	PR D65 091102	D. Acosta et al.	(CDF Collab.)	REFID=48685
HEISTER	02Q	PL B543 173	A. Heister <i>et al.</i>	(ALEPH Collab.)	REFID=48961
ABBIENDI	01T	PL B521 181	G. Abbiendi <i>et al.</i>	(OPAL Collab.)	REFID=48471
				\	
AFFOLDER	01	PR D63 032003	T. Affolder et al.	(CDF Collab.)	REFID=48049
AFFOLDER	01A	PR D64 032002	T. Affolder et al.	(CDF Collab.)	REFID=52195
AFFOLDER	01C	PRL 86 3233	T. Affolder et al.	(CDF Collab.)	REFID=48117
AFFOLDER	00B	PRL 84 216	T. Affolder et al.	(CDF Collab.)	REFID=47354
BARATE	00S	PL B494 33	S. Barate et al.	(ALEPH Collab.)	REFID=47838
ABBOTT	99G	PR D60 052001	B. Abbott et al.	(D0 Collab.)	REFID=47135
ABE	99B	PRL 82 271	F. Abe et al.	(CDF Collab.)	REFID=46548
Also		PRL 82 2808 (erratum)	F. Abe et al.	(CDF Collab.)	REFID=46822
CHANG	99	PR D59 091503	D. Chang, W. Chang, E. Ma	(65. 66.145.)	REFID=46999
ABBOTT	98D	PRL 80 2063	B. Abbott <i>et al.</i>	(D0 Collab.)	REFID=45940
				'	
ABBOTT	98F	PR D58 052001	B. Abbott et al.	(D0 Collab.)	REFID=45967
ABE	98E	PRL 80 2767	F. Abe et al.	(CDF Collab.)	REFID=45941
ABE	98F	PRL 80 2779	F. Abe <i>et al.</i>	(CDF Collab.)	REFID=45942
ABE	98G	PRL 80 2525	F. Abe <i>et al.</i>	(CDF Collab.)	REFID=46013
ABE	98X	PRL 80 2773	F. Abe et al.	(CDF Collab.)	REFID=47531
BHAT	98B	IJMP A13 5113	P.C. Bhat, H.B. Prosper, S.S. Snyder		REFID=46531
ABACHI	97E	PRL 79 1197	S. Abachi et al.	(D0 Collab.)	REFID=45590
ABE	97R	PRL 79 1992	F. Abe et al.	(CDF Collab.)	REFID=45594
ABE	97V	PRL 79 3585	F. Abe et al.	(CDF Collab.)	REFID=45716
				(CDI Collab.)	REFID=44495
PDG	96	PR D54 1	R. M. Barnett et al.	(Do Callata)	
ABACHI	95	PRL 74 2632	S. Abachi <i>et al.</i>	(D0 Collab.)	REFID=44167
ABE	95F	PRL 74 2626	F. Abe et al.	(CDF Collab.)	REFID=44170
ABE	94E	PR D50 2966	F. Abe <i>et al.</i>	(CDF Collab.)	REFID=43810
Also		PRL 73 225	F. Abe <i>et al.</i>	(CDF Collab.)	REFID=43823
				•	-